Abstract

Thanks to the increasingly widespread additive manufacturing technology and promising properties, the use of lattice structures (LS) is becoming increasingly frequent. LS allows the components to be designed with tunable stiffness, which can unlock the control of natural frequencies. However, crucial challenges must be faced to integrate LS into the typical design process. In this work, an experimental and numerical study of LS-enabled tuning of natural frequencies in mechanical components are proposed. In a first step, the difficulties arising with the large amount of finite element method (FEM) nodes, that are required to predict LS complex shapes in detail, are overcome by modeling LS with an elastic metamaterial whose stiffness properties are determined through ad hoc finite element analyses. After that, a simplified investigation can be conducted on the modal properties of components with fixed external shape and variable internal LS filling, based on triply periodic minimal surfaces (TPMS) lattices. In those conditions, the parameters of the LS core can be tuned to control and optimize the global modal frequencies of the entire geometry. In addition, the admissible range of frequencies can be estimated. Optimized plates results are validated through an experimental test campaign on additively manufactured specimens made with laser powder bed fusion technology. The samples are hammer-tested with various boundary conditions while laser sensors measure the oscillation data of selected points. Finally, estimated and identified natural frequencies were compared. The described model is suitable to be implemented in an automated tool for designers.

References

1.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
, p.
108137
.10.1016/j.matdes.2019.108137
2.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.10.1016/j.ijmachtools.2012.06.002
3.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Advanced Lightweight 316 L Stainless Steel Cellular Lattice Structures Fabricated Via Selective Laser Melting
,”
Mater. Des.
,
55
, pp.
533
541
.10.1016/j.matdes.2013.10.027
4.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.10.1115/1.4007277
5.
Magerramova
,
L.
,
Volkov
,
M.
,
Afonin
,
A.
,
Svinareva
,
M.
, and
Kalinin
,
D.
,
2018
, “
Application of Light Lattice Structures for Gas Turbine Engine Fan Blades
,”
Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences
, ICAS, Belo Horizonte, Brazil, Sept. 9–14, Paper No.
ICAS2018_0173
.https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0173_paper.pdf
6.
Shen
,
B.
,
Li
,
Y.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2019
, “
Heat Transfer Enhancement of Wedge-Shaped Channels by Replacing Pin Fins With Kagome Lattice Structures
,”
Int. J. Heat Mass Transfer
,
141
, pp.
88
101
.10.1016/j.ijheatmasstransfer.2019.06.059
7.
Simsek
,
U.
,
Akbulut
,
A.
,
Gayir
,
C. E.
,
Basaran
,
C.
, and
Sendur
,
P.
,
2021
, “
Modal Characterization of Additively Manufactured TPMS Structures: Comparison Between Different Modeling Methods
,”
Int. J. Adv. Manuf. Technol.
,
115
(
3
), pp.
657
674
.10.1007/s00170-020-06174-0
8.
Cheng
,
L.
,
Liang
,
X.
,
Belski
,
E.
,
Wang
,
X.
,
Sietins
,
J. M.
,
Ludwick
,
S.
, and
To
,
A.
,
2018
, “
Natural Frequency Optimization of Variable-Density Additive Manufactured Lattice Structure: Theory and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
105002
.10.1115/1.4040622
9.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2020
, “
Design and Optimization of Lattice Structures: A Review
,”
Appl. Sci.
,
10
(
18
), p.
6374
.10.3390/app10186374
10.
Somnic
,
J.
, and
Jo
,
B. W.
,
2022
, “
Status and Challenges in Homogenization Methods for Lattice Materials
,”
Materials
,
15
(
2
), p.
605
.10.3390/ma15020605
11.
Chatzigeorgiou
,
C.
,
Piotrowski
,
B.
,
Chemisky
,
Y.
,
Laheurte
,
P.
, and
Meraghni
,
F.
,
2022
, “
Numerical Investigation of the Effective Mechanical Properties and Local Stress Distributions of TPMS-Based and Strut-Based Lattices for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
105025
.10.1016/j.jmbbm.2021.105025
12.
Pais
,
A.
,
Alves
,
J. L.
,
Jorge
,
R. N.
, and
Belinha
,
J.
,
2023
, “
Multiscale Homogenization Techniques for TPMS Foam Material for Biomedical Structural Applications
,”
Bioengineering
,
10
(
5
), p.
515
.10.3390/bioengineering10050515
13.
Strömberg
,
N.
,
2021
, “
Optimal Grading of TPMS-Based Lattice Structures With Transversely Isotropic Elastic Bulk Properties
,”
Eng. Optim.
,
53
(
11
), pp.
1871
1883
.10.1080/0305215X.2020.1837790
14.
Fu
,
J.
,
Sun
,
P.
,
Du
,
Y.
,
Li
,
H.
,
Zhou
,
X.
, and
Tian
,
Q.
,
2022
, “
Isotropic Design and Mechanical Characterization of TPMS-Based Hollow Cellular Structures
,”
Compos. Struct.
,
279
, p.
114818
.10.1016/j.compstruct.2021.114818
15.
Ozdemir
,
M.
,
Simsek
,
U.
,
Kuser
,
E.
,
Gayir
,
C. E.
,
Celik
,
A.
, and
Sendur
,
P.
,
2023
, “
Experimental and Numerical Modal Characterization for Additively Manufactured Triply Periodic Minimal Surface Lattice Structures: Comparison Between Free‐Size and Homogenization‐Based Optimization Methods
,”
Adv. Eng. Mater.
,
25
(
11
), p.
2201811
.10.1002/adem.202201811
16.
ASTM International
, 2021, “
Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E1876-21
.10.1520/E1876-21
17.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.10.1007/s00158-013-0978-6
18.
Schoen
,
A. H.
,
1970
, “
Infinite Periodic Minimal Surfaces Without Self-Intersections
,” NASA Electronics Research Center, Cambridge, MA, Report No.
C-98
.https://ntrs.nasa.gov/citations/19700020472
19.
Catchpole-Smith
,
S.
,
Sélo
,
R. R. J.
,
Davis
,
A. W.
,
Ashcroft
,
I. A.
,
Tuck
,
C. J.
, and
Clare
,
A.
,
2019
, “
Thermal Conductivity of TPMS Lattice Structures Manufactured Via Laser Powder Bed Fusion
,”
Addit. Manuf.
,
30
, p.
100846
.10.1016/j.addma.2019.100846
20.
Wang
,
N.
,
Meenashisundaram
,
G. K.
,
Chang
,
S.
,
Fuh
,
J. Y. H.
,
Dheen
,
S. T.
, and
Senthil Kumar
,
A.
,
2022
, “
A Comparative Investigation on the Mechanical Properties and Cytotoxicity of Cubic, Octet, and TPMS Gyroid Structures Fabricated by Selective Laser Melting of Stainless Steel 316 L
,”
J. Mech. Behav. Biomed. Mater.
,
129
, p.
105151
.10.1016/j.jmbbm.2022.105151
21.
Sun
,
Q.
,
Sun
,
J.
,
Guo
,
K.
, and
Wang
,
L.
,
2022
, “
Compressive Mechanical Properties and Energy Absorption Characteristics of SLM Fabricated Ti6Al4V Triply Periodic Minimal Surface Cellular Structures
,”
Mech. Mater.
,
166
, p.
104241
.10.1016/j.mechmat.2022.104241
22.
Bonatti
,
C.
, and
Mohr
,
D.
,
2019
, “
Smooth-Shell Metamaterials of Cubic Symmetry: Anisotropic Elasticity, Yield Strength and Specific Energy Absorption
,”
Acta Mater.
,
164
, pp.
301
321
.10.1016/j.actamat.2018.10.034
23.
Bertini
,
L.
,
Bucchi
,
F.
,
Frendo
,
F.
,
Moda
,
M.
, and
Monelli
,
B. D.
,
2019
, “
Residual Stress Prediction in Selective Laser Melting: A Critical Review of Simulation Strategies
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
609
636
.10.1007/s00170-019-04091-5
24.
ANSYS, Inc.
, 2023, “
ANSYS® Academic Research Mechanical, Release 2021 R2, Help System, Mechanical User's Guide
,” ANSYS, Inc., Canonsburg, PA.
25.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.10.1007/BF01650949
26.
Macoretta
,
G.
,
Bertini
,
L.
,
Monelli
,
B. D.
, and
Berto
,
F.
,
2022
, “
Productivity-Oriented SLM Process Parameters Effect on the Fatigue Strength of Inconel 718
,”
Int. J. Fatigue
,
168
, p.
107384
.10.1016/j.ijfatigue.2022.107384
27.
Bertini
,
L.
,
Neri
,
P.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2017
, “
One Exciter per Sector Test Bench for Bladed Wheels Harmonic Response Analysis
,”
ASME
Paper No. GT2017-63628. 10.1115/GT2017-63628
You do not currently have access to this content.