Abstract

This paper expands the one-engine-inoperative conventional oversizing consideration to account for aircraft propulsion systems with multiple energy sources and thrust-generating media. Components in a generic hybrid propulsion system are categorized into power-generation, power-transmission, and thrust-generation. For a given architecture, each possible single component failure is simulated to identify elements affected or eliminated by the respective loss of power, through the use of connection matrices. Failures are linked to losses in supplied and propulsive power, creating a list of oversizing factors for all individual components. Each element is oversized according to its corresponding maximum oversizing rate, defining the ideally redundant propulsion system. Case studies for conventional, all-electric, and hybrid-electric powertrains highlight the need for balancing the number of components between minimizing excess power and increasing the probability of a failure. Additionally, it is shown that asymmetrical configurations should not have a major imbalance of power to avoid significant oversizing. The proposed methodology is applied to a 19-passenger, commuter aircraft. Increasing oversizing rate close to ideal leads to lower optimum energy consumption and boosts redundancy. However, payload capacity penalties are required, up to four passengers for ideal oversizing. Heavier variants without penalties are up to 4% more efficient in terms of energy-per-weight in their carrying capacity against counterparts of the same oversize rate with reduced payload capacity. The proposed method maintains the principles of the conventional oversizing process and highlights the tradeoffs needed between redundancy and performance in sizing novel propulsion systems.

References

1.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Skowron
,
A.
,
Allen
,
M. R.
,
Burkhardt
,
U.
,
Chen
,
Q.
,
Doherty
,
S. J.
, et al.,
2021
, “
The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018
,”
Atmos. Environ.
,
244
, p.
117834
.10.1016/j.atmosenv.2020.117834
2.
United States Federal Aviation Authority, 2021, “Aviation Climate Action Plan,” United States Federal Aviation Authority, accessed Sept. 13, 2022, https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
3.
Darecki
,
M.
,
King
,
I.
,
Edelstenne
,
C.
,
Ky
,
P.
,
Enders
,
T.
,
Mathieu
,
M.
,
Fernandez
,
E.
, et al.,
2011
, “
Flightpath 2050 - Europe's Vision for Aviation Report of the High-Level Group on Aviation Research
,”
Publications Office of the European Union
,
Luxembourg
.https://www.arcs.aero/sites/default/files/downloads/Bericht_Flightpath_2050.pdf
4.
Kurzawska
,
P.
,
2021
, “
Overview of Sustainable Aviation Fuels Including Emission of Particulate Matter and Harmful Gaseous Exhaust Gas Compounds
,”
Transp. Res. Procedia
,
59
, pp.
38
45
.10.1016/j.trpro.2021.11.095
5.
Huq
,
N. A.
,
Hafenstine
,
G. R.
,
Huo
,
X.
,
Nguyen
,
H.
,
Tifft
,
S. M.
,
Conklin
,
D. R.
,
Stück
,
D.
, et al.,
2021
, “
Toward Net-Zero Sustainable Aviation Fuel With Wet Waste-Derived Volatile Fatty Acids
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
13
), p.
e2023008118
.10.1073/pnas.2023008118
6.
Spencer
,
R.
,
2023
, “
Certification Considerations for the Configuration of a Hydrogen-Fuelled Aeroplane
,”
Aeronaut. J.
,
127
(
1308
), pp.
213
231
.10.1017/aer.2022.79
7.
Boretti
,
A.
, and
Castelletto
,
S.
,
2022
, “
NH3 Prospects in Combustion Engines and Fuel Cells for Commercial Aviation by 2030
,”
ACS Energy Lett. Vol.
,
7
(
8
), pp.
2557
2564
.10.1021/acsenergylett.2c00994
8.
Kadyk
,
T.
,
Winnefeld
,
C.
,
Hanke-Rauschenbach
,
R.
, and
Krewer
,
U.
,
2018
, “
Analysis and Design of Fuel Cell Systems for Aviation
,”
Energies
,
11
(
2
), p.
375
.10.3390/en11020375
9.
Rendón
,
M. A.
,
Sánchez R
,
C. D.
,
Gallo M
,
J.
, and
Anzai
,
A. H.
,
2021
, “
Aircraft Hybrid-Electric Propulsion: Development Trends, Challenges and Opportunities
,”
J. Control, Autom. Electr. Syst.
,
32
(
5
), pp.
1244
1268
.10.1007/s40313-021-00740-x
10.
Kang
,
S.
,
Roumeliotis
,
I.
,
Zhang
,
J.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2022
, “
Assessment of Engine Operability and Overall Performance for Parallel Hybrid Electric Propulsion Systems for a Single-Aisle Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041002
.10.1115/1.4052880
11.
Saias
,
C. A.
,
Goulos
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2023
, “
On the Effects of Optimal Implementation of Variable Rotor Speed and Power Management on Hybrid-Electric Rotorcraft
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031028
.10.1115/1.4056855
12.
Nojoumi
,
J.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2009
, “
Greenhouse Gas Emissions Assessment of Hydrogen and Kerosene-Fueled Aircraft Propulsion
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1363
1369
.10.1016/j.ijhydene.2008.11.017
13.
Antcliff
,
K. R.
, and
Capristan
,
F. M.
,
2017
, “
Conceptual Design of the Parallel Electric-Gas Architecture With Synergistic Utilization Scheme (PEGASUS) Concept
,”
AIAA
Paper No. 2017-4001.10.2514/6.2017-4001
14.
Hoelzen
,
J.
,
Silberhorn
,
D.
,
Zill
,
T.
,
Bensmann
,
B.
, and
Hanke-Rauschenbach
,
R.
,
2022
, “
Hydrogen-Powered Aviation and Its Reliance on Green Hydrogen Infrastructure – Review and Research Gaps
,”
Int. J. Hydrogen Energy
,
47
(
5
), pp.
3108
3130
.10.1016/j.ijhydene.2021.10.239
15.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
16.
Borreti
,
A.
,
2021
, “
Testing the Hypothesis Hydrogen Jets May Significantly Contribute to Global Warming Through Jets Contrails
,”
Int. J. Hydrogen Energy
,
46
, pp.
36610
36618
.10.1016/j.ijhydene.2021.08.173
17.
Moore
,
M. D.
, and
Fredericks
,
B.
,
2014
, “
Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Market
,”
AIAA
Paper No. 2014-0535.10.2514/6.2014-0535
18.
United States Department of Transportation, Bureau of Transportation Statistics
,
2023
, “
Transportation Fatalities by Mode: 2000–2020
,” U.S. Department of Transportation, Bureau of Transportation Statistics, Washington, DC, accessed Aug. 21, https://www.bts.gov/content/transportation-fatalities-mode
19.
International Civil Aviation Organization, 2022,
2022 Safety Report
,” International Civil Aviation Organization (ICAO), Montréal, QC, Canada, accessed Aug. 21, 2023, https://www.icao.int/safety/pages/safety-report.aspx
20.
European Parliament, Council of the European Union,
2018
, “
Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on Common Rules in the Field of Civil Aviation …
,”
Off. J. Eur. Union
,
212
, pp.
1
122
.
21.
Marciello
,
V.
,
Orefice
,
F.
,
Nicolosi
,
F.
,
Ciliberti
,
D.
, and
Della Vecchia
,
P.
,
2023
, “
Design of Hybrid-Electric Aircraft With Fault-Tolerance Considerations
,”
Chin. J. Aeronaut.
,
36
(
2
), pp.
160
178
.10.1016/j.cja.2022.05.014
22.
Xie
,
J.
,
Bendarkar
,
M. V.
,
Cai
,
Y.
, and
Mavris
,
D. N.
,
2023
, “
Revisiting “Critical-Engine-Inoperative” Conditions for Distributed Hybrid-Electric Aircraft
,”
AIAA
Paper No. 2023-3608.10.2514/6.2023-3608
23.
Thomas
,
G. L.
, and
Malone
,
B. P.
,
2023
, “
Power System Redundancy Design Trends for All-Electric eVTOL Quadrotors
,”
AIAA
Paper No. 2023–1209.10.2514/6.2023-1209
24.
Finger
,
F.
,
Braun
,
D.
, and
Bil
,
C.
,
2019
, “
Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft
,”
AIAA
Paper No. 2019–1812.10.2514/6.2019-1812
25.
Papadopoulos
,
K. I.
,
Nasoulis
,
C. P.
,
Ntouvelos
,
E. G.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Power Flow Optimization for a Hybrid-Electric Propulsion System
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111013
.10.1115/1.4055478
26.
Federal Aviation Administration (FAA),
2023
, “
CFR, Title 14, Chapter 1, Subchapter C, Part 23: Airworthiness Standards: Normal Category Airplanes
,”
Code of Federal Regulations
, Federal Aviation Administration, Washington, DC.
27.
European Aviation Safety Agency (EASA),
2018
, “
Easy Access Rules for Normal, Utility, Aerobatic and Commuter Category Aeroplanes (CS-23) (Initial Issue)
,” EASA eRules, European Aviation Safety Agency, Brussels, Belgium.
28.
Federal Aviation Administration (FAA),
2023
, “
CFR, Title 14, Chapter 1, Subchapter C, Part 25: Airworthiness Standards: Transport Category Airplanes
,” Code of Federal Regulations, Federal Aviation Administration, Washington, DC.
29.
European Aviation Safety Agency (EASA),
2022
, “
Easy Access Rules for Large Aeroplanes (CS-25) (Initial Issue)
,” EASA eRules, European Aviation Safety Agency, Brussels, Belgium.
30.
Cumpsty
,
N.
, and
Heyes
,
A.
,
2015
,
Jet Propulsion: A Simple Guide to the Aerodynamics and Thermodynamic Design and Performance of Jet Engines
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
31.
Gkoutzamanis
,
V.
,
Nasoulis
,
C.
,
Protopapadakis
,
G.
,
Kalfas
,
A.
,
Kavvalos
,
M.
,
Diamantidou
,
D. E.
,
Sahoo
,
S.
,
Kyprianidis
,
K.
,
Tsirikoglou
,
P.
, and
Chokani
,
N.
,
2020
, “
HECARRUS: Hybrid Electric Small Commuter Aircraft Conceptual Design
,”
Book of Abstracts—10th EASN Virtual International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens
, Sept. 2–4.10.3030/865089
32.
European Aviation Safety Agency (EASA),
2022
, “
Type-Certificate Data Sheet for PT6A-67 Series Engines
,” EASA, Brussels, Belgium, TCDS No.
IM.E.008
.https://www.easa.europa.eu/en/documentlibrary/type-certificates/engine-cs-e/easaime008-pratt-and-whitney-canada-pt6a-67-series
33.
European Aviation Safety Agency (EASA),
2022
, “
Type-Certificate Data Sheet for PT6A-41 Series Engines
,” EASA, Brussels, Belgium, TCDS No.
IM.E.078
.https://www.easa.europa.eu/en/documentlibrary/type-certificates/engine-cs-e/easaime078-pratt-and-whitney-canada-pt6a-41-series
34.
European Aviation Safety Agency (EASA),
2023
, “
Type-Certificate Data Sheet for PT6A-100 Series Engines
,” EASA, Brussels, Belgium, TCDS No.
IM.E.094
.https://www.easa.europa.eu/en/documentlibrary/type-certificates/engine-cs-e/easaime094-pratt-and-whitney-canada-pt6a-100-series
35.
Aviation Week Network, Wrights Media,
2023
, “
Gas Turbine Engines
,”
Aviation Week & Space Technology
, Aviation Week Network, Wrights Media, Houston, TX, accessed Nov. 20, 2023, Aviationweek.com/awst
36.
Goldberg
,
C.
,
Nalianda
,
D.
,
Laskaridis
,
P.
, and
Pilidis
,
P.
,
2018
, “
Installed Performance Assessment of an Array of Distributed Propulsors Ingesting Boundary Layer Flow
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071203
.10.1115/1.4038837
37.
Paula Costa
,
F.
,
Tomita
,
J. T.
,
Silva
,
V. T.
,
Andersson
,
N.
,
Grönstedt
,
T.
, and
Bringhenti
,
C.
,
2023
, “
Aerodynamic Analysis of Conventional and Boundary Layer Ingesting Propellers
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011024
.10.1115/1.4055014
38.
Gkoutzamanis
,
V. G.
,
Kavvalos
,
M. D.
,
Srinivas
,
A.
,
Mavroudi
,
D.
,
Korbetis
,
G.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A. I.
,
2021
, “
Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091019
.10.1115/1.4050870
39.
Nasoulis
,
C. P.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Multidisciplinary Conceptual Design for a Hybrid-Electric Commuter Aircraft
,”
Aeronaut. J.
,
126
(
1302
), pp.
1242
1264
.10.1017/aer.2022.32
40.
Schneider
,
M.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Visser
,
W.
,
Stumpf
,
E.
,
Hofmann
,
J.-P.
, and
Bohn
,
D.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft
,”
ASME
Paper No. GT2019-92065. 10.1115/GT2019-92065
41.
Mecrow
,
B. C.
,
Atkinson
,
G. J.
,
Bennett
,
J. W.
,
Atkinson
., and
D. J.
,
Wenping Cao
,
2012
, “
Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA)
,”
IEEE Trans. Ind. Electron.
,
59
(
9
), pp.
3523
3531
.10.1109/TIE.2011.2165453
42.
Misra
,
A.
,
2018
, “
Energy Storage for Electrified Aircraft: The Need for Better Batteries, Fuel Cells and Supercapacitors
,”
IEEE Elect. Mag.
,
6
(
3
), pp.
54
61
.10.1109/MELE.2018.2849922
43.
Ning
,
F.
,
He
,
X.
,
Shen
,
Y.
,
Jin
,
H.
,
Li
,
Q.
,
Li
,
D.
,
Li
,
S.
,
Zhan
,
Y.
,
Du
,
Y.
,
Jiang
,
J.
,
Yang
,
H.
, and
Zhou
,
X.
,
2017
, “
Flexible and Lightweight Fuel Cell With High Specific Power Density
,”
ACS Nano
,
11
(
6
), pp.
5982
5991
.10.1021/acsnano.7b01880
44.
Voskuijl
,
M.
,
van Bogaer
,
J.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CAES Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
45.
Giannakakis
,
P.
,
Laskaridis
,
P.
,
Nikolaidis
,
T.
, and
Kalfas
,
A. I.
,
2015
, “
Toward a Scalable Propeller Performance Map
,”
J. Propul. Power
,
31
(
4
), pp.
1073
1082
.10.2514/1.B35498
You do not currently have access to this content.