Abstract

Electrified Aircraft Propulsion (EAP) holds great potential for reducing aviation emissions and fuel burn. A variety of EAP architectures have been proposed including partially turbo-electric configurations that combine turbofan engines with motor-driven propulsors. Such architectures exhibit coupling between subsystems and thus require an integrated control solution. To address this need, this paper presents an integrated control design strategy for a commercial single-aisle partially turbo-electric aircraft concept consisting of two wing-mounted turbofan engines and an electric motor driven tailfan propulsor. Within this architecture the turbofans serve the dual purpose of generating thrust and supplying mechanical offtake power used to generate electricity for the tailfan motor. The propulsion control system is tasked with coordinating turbofan and tailfan operation under both steady-state and transient scenarios. The paper introduces a linear state-space representation of the architecture reflecting the coupling between the turbofan and tailfan subsystems along with loop transfer functions reflecting open- and closed-loop system dynamics. Also discussed is an applied strategy for scheduling the tailfan setpoint command based on the average sensed fan speed of the two turbofans. This approach ensures synchronized operation of the turbofan and tailfan subsystems while also allowing the turbofan fuel control design to be simplified. Performance of the integrated control design is assessed through a real-time hardware-in-the-loop test conducted at the NASA Electric Aircraft Testbed. During this test a scaled version of the electrical system and turbomachinery shaft dynamics were implemented in electrical machine hardware and evaluated under closed-loop control. Results from this facility test are presented to illustrate the efficacy of the applied integrated control design approach under steady-state and transient scenarios including a full-flight mission profile.

References

1.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA
Paper No. 2017-4701.10.2514/6.2017-4701
2.
Felder
,
J. L.
,
2015
, “
NASA Electric Propulsion System Studies
,” accessed Oct. 25, 2023, https://ntrs.nasa.gov/api/citations/20160009274/downloads/20160009274.pdf
3.
National Academies of Sciences, Engineering, and Medicine
,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
.10.17226/23490
4.
Schäfer
,
A. W.
,
Barrett
,
S. R. H.
,
Doyme
,
K.
,
Dray
,
L. M.
,
Gnadt
,
A. R.
,
Self
,
R.
,
O'Sullivan
,
A.
,
Synodinos
,
A. P.
, and
Torija
,
A. J.
,
2018
, “
Technological, Economic and Environmental Prospects of All-Electric Aircraft
,”
Nat. Energy
,
4
(
2
), pp.
160
166
.10.1038/s41560-018-0294-x
5.
Jansen
,
R.
,
Brown
,
G. V.
,
Felder
,
J. L.
, and
Duffy
,
K. P.
,
2015
, “
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
,”
AIAA
Paper No. 2015-3890.10.2514/6.2015-3890
6.
Friedrich
,
C.
, and
Robertson
,
P. A.
,
2015
, “
Hybrid-Electric Propulsion for Aircraft
,”
J. Aircr.
,
52
(
1
), pp.
176
189
.10.2514/1.C032660
7.
NASA
,
2019
, “
NASA Aeronautics Strategic Implementation Plan: 2019 Update
,”
Report No. NP-2017-01-2352-HQ.
8.
National Aeronautics and Space Administration
2022
, “
Sustainable Flight National Partnership
,” NASA, Washington, DC, acessed Dec. 1, 2022, https://www.nasa.gov/aeroresearch/sustainable-aviation-np/
9.
United States Federal Aviation Authority
,
2021
, “
Aviation Climate Action Plan
,” United States Federal Aviation Authority, Washington, DC, accessed Sept. 23, 2022, https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
10.
Zhang
,
X.
,
Bowman
,
C. L.
,
O'Connell
,
T. C.
, and
Haran
,
K. S.
,
2018
, “
Large Electric Machines for Aircraft Electric Propulsion
,”
IET Electric Power Appl.
,
12
(
6
), pp.
767
779
.10.1049/iet-epa.2017.0639
11.
Cotton
,
I.
,
Gardner
,
R.
,
Schweickart
,
D.
,
Grosean
,
D.
, and
Severns
,
C.
,
2016
, “
Design Considerations for Higher Electrical Power System Voltages in Aerospace Vehicles
,” IEEE International Power Modulator and High Voltage Conference (
IPMHVC
), San Francisco, CA, July 6–9, pp.
57
61
.10.1109/IPMHVC.2016.8012771
12.
Chapman
,
J. W.
,
Hasseeb
,
H.
, and
Schnulo
,
S.
,
2020
, “
Thermal Management System Design for Electrified Aircraft Propulsion Concepts
,”
AIAA
Paper No. 2020-3571.10.2514/6.2020-3571
13.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D. E.
,
2020
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011025
.10.1115/1.4044969
14.
Simon
,
D. L.
,
2022
, “
System-Level Control Concepts for Electrified Aircraft Propulsion Systems
,” NASA Technical Memorandum, No. TM-20210026284.
15.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Thomas
,
G. L.
,
2019
, “
A Control Strategy for Turbine Electrified Energy Management
,”
AIAA
Paper No. 2019-4499.10.2514/6.2019-4499
16.
Misley
,
A.
,
D'Arpino
,
M.
,
Ramesh
,
P.
, and
Canova
,
M.
,
2021
, “
A Real-Time Energy Management Strategy for Hybrid Electric Aircraft Propulsion Systems
,”
AIAA
Paper No. 2021-3283.10.2514/6.2021-3283
17.
Richter
,
H.
,
Connolly
,
J. W.
, and
Simon
,
D. L.
,
2020
, “
Optimal Control and Energy Management for Hybrid Gas-Electric Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091009
.10.1115/1.4047890
18.
Doff-Sotta
,
M.
,
Cannon
,
M.
, and
Bacic
,
M.
,
2023
, “
Predictive Energy Management for Hybrid Electric Aircraft Propulsion Systems
,”
IEEE Trans. Control Syst. Technol.
,
31
(
2
), pp.
602
614
.10.1109/TCST.2022.3193295
19.
Connolly
,
J. W.
,
Chapman
,
J. W.
,
Stalcup
,
E. J.
,
Hunker
,
K. R.
,
Chicatelli
,
A. K.
, and
Thomas
,
G. L.
,
2018
, “
Modeling and Control Design for a Turboelectric Single Aisle Aircraft Propulsion System
,”
AIAA
Paper No. 2018-5010.10.2514/6.2018-5010
20.
Connolly
,
J.
, and
Stalcup
,
E.
,
2017
, “
Dynamic Modeling, Controls, and Testing for Electrified Aircraft
,” accessed Oct. 25, 2023, https://ntrs.nasa.gov/api/citations/20180000358/downloads/20180000358.pdf
21.
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2019
, “
Dynamic Analysis of the STARC-ABL Propulsion System
,”
AIAA
Paper No. 2019-4182.10.2514/6.2019-4182
22.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
AIAA
Paper No. 2016-1027.10.2514/6.2016-1027
23.
Felder
,
J. L.
,
Schnulo
,
S. L.
,
Tong
,
M. T.
,
Berton
,
J. J.
,
Thacker
,
R. P.
, and
Haller
,
W. J.
,
2022
, “
An Updated Assessment of Turboelectric Boundary Layer Ingestion Propulsion Applied to a Single-Aisle Commercial Transport
,” Paper No.
NASA/TM-20210016661
.https://ntrs.nasa.gov/citations/20210016661
24.
Lytle
,
J.
,
Follen
,
G.
,
Naiman
,
C.
,
Evans
,
A.
,
Veres
,
J.
,
Owen
,
K.
, and
Lopez
,
I.
,
2000
, “
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
,” No.
NASA/TM-2000-209795
.https://ntrs.nasa.gov/citations/20000120213
25.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T.-H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,” No.
NASA/TM-2014-216638
.https://ntrs.nasa.gov/api/citations/20180002976/downloads/20180002976.pdf
26.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2018
, “
An Approach for Utilizing Power Flow Modeling for Simulations of Hybrid Electric Propulsion Systems
,”
AIAA
Paper No. 2018-5018.10.2514/6.2018-5018
27.
Jaw
,
L.
, and
Mattingly
,
J.
,
2009
,
Aircraft Engine Controls
,
American Institute of Aeronautics and Astronautics
,
New York
.
28.
R. D.
,
Garg
,
S.
,
2012
, “
Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators
,”
ASME
Paper No. GT2012-70017.10.1115/GT2012-70017
29.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2017
, “
Control Design for an Advanced Geared Turbofan Engine
,”
AIAA
Paper No. 2017-4820.10.2514/6.2017-4820
30.
Haglage
,
J. M.
, and
Brown
,
T. W.
,
2020
, “
NASA Electric Aircraft Testbed (NEAT) Reconfiguration to Enable Altitude Testing of Megawatt-Scale Electric Machines
,”
AIAA
Paper No. 2020-3561.10.2514/6.2020-3561
31.
Bianco
,
S. J.
, and
Simon
,
D. L.
,
2023
, “
Control and Scaling Approach for the Emulation of Scaled Dynamic Mechanical Loads
,”
AIAA
Paper No. 2023-4232.10.2514/6.2023-4232
32.
DASHlink
,
2012
, DASHlink—Sample Flight Data, accessed Oct. 12, 2022, https://c3.nasa.gov/dashlink/resources/664/
33.
Simon
,
D. L.
,
Bianco
,
S. J.
,
Horning
,
M. A.
,
Saus
,
J. R.
,
Amthor
,
A. E.
, and
Sachs-Wetstone
,
J. J.
,
2023
, “
Real-Time Hardware-in-the-Loop Evaluation of a Partially Turboelectric Propulsion Control Design
,”
AIAA
Paper No. 2023-4235.10.2514/6.2023-4235
34.
Simon
,
D. L.
, and
Connolly
,
J. W.
,
2020
, “
Electrified Aircraft Propulsion Systems: Gas Turbine Control Considerations for the Mitigation of Potential Failure Modes and Hazards
,”
ASME
Paper No. GT2020-16335.10.1115/GT2020-16335
You do not currently have access to this content.