Abstract

Reduction of gas turbine (GT) carbon emissions relies on a strategy for fueling the engines with pure or blended hydrogen. The major technical challenges to solve are (i) the adjustments to the engine and in particular the combustion chamber and (ii) a series of issues to solve to guarantee safe operations. In fact, compared to natural gas, hydrogen fueling implies higher risks of explosion in case of leak in the turbine enclosure and a more careful design of the ventilation system. Thus, a deeper comprehension of hydrogen leak scenarios is needed to adjust the safe design strategy of the enclosure. To this aim, a series of numerical investigations was carried out to understand how different methane–hydrogen blends (from pure methane to pure hydrogen) behave when leaking from a pipeline with fuel pressure that span from 1.5 to 4.5 MPa. The different fuel blends' leaks in form of underexpanded jets were studied under different cross-flow ventilation conditions, with ventilation velocity spanning from 0 m/s to 5 m/s. When compared to pure methane, the outcome is a three times longer penetration distance for pure hydrogen axisymmetric flammable clouds, whereas in cross-flow conditions a more complex three-dimensional behavior was found, potentially opening a safety-related concerns discussed in the paper.

References

1.
European Commission
,
2020
, “
Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe
,”
European Commission
,
Brussels, Belgium
.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0301
2.
Baldini
,
M.
,
Cinelli
,
R.
,
Minotti
,
S.
,
Pampaloni
,
G.
,
Quartieri
,
E.
, and
Rossin
,
S.
,
2021
, “
Moving Gas Turbine Package From Conventional Gas to Hydrogen Blend
,”
International Conference on Hydrogen Safety
,
Edinburgh, UK
, Sept.
19
22
.https://hysafe.info/uploads/papers/2021/78.pdf
3.
Yang
,
F.
,
Wang
,
T.
,
Deng
,
X.
,
Dang
,
J.
,
Huang
,
Z.
,
Hu
,
S.
,
Li
,
Y.
, and
Ouyang
,
M.
,
2021
, “
Review on Hydrogen Safety Issues: Incident Statistics, Hydrogen Diffusion, and Detonation Process
,”
Int. J. Hydrogen Energy
,
46
(
61
), pp.
31467
31488
.10.1016/j.ijhydene.2021.07.005
4.
Molkov
,
V.
,
2012
,
Fundamentals of Hydrogen Safety Engineering I
, ebook.https://www.arma.org.au/wp-content/uploads/2017/03/fundamentals-of-hydrogen-safety-engineering-i.pdf
5.
Santon
,
R. C.
,
Kidger
,
J. W.
, and
Lea
,
C. J.
,
2002
, “
Safety Developments in Gas Turbine Power Applications
,”
ASME
Paper No. GT2002-30469.10.1115/GT2002-30469
6.
Santon
,
R. C.
,
Ivings
,
M. J.
, and
Pritchard
,
D. K.
,
2005
, “
A New Gas Turbine Enclosure Ventilation Design Criterion
,”
ASME
Paper No. GT2005-68725.10.1115/GT2005-68725
7.
Corsini
,
A.
,
Delibra
,
G.
,
Minotti
,
S.
, and
Rossin
,
S.
,
2015
, “
Numerical Assessment of Fan-Ducting Coupling for Gas Turbine Ventilation Systems
,”
ASME
Paper No. GT2015-42449.10.1115/GT2015-42449
8.
Franquet
,
E.
,
Perrier
,
V.
,
Gibout
,
S.
, and
Bruel
,
P.
,
2015
, “
Free Underexpanded Jets in a Quiescent Medium: A Review
,”
Prog. Aerosp. Sci.
,
77
, pp.
25
53
.10.1016/j.paerosci.2015.06.006
9.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511840531
10.
Lacome
,
J. M.
,
Jamois
,
D.
,
Perrette
,
L.
, and
Proust
,
C. H.
,
2011
, “
Large-Scale Hydrogen Release in an Isothermal Confined Area
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
2302
2312
.10.1016/j.ijhydene.2010.10.080
11.
Denisenko
,
V. P.
,
Kirillov
,
I. A.
,
Korobtsev
,
S. V.
, and
Nikolaev
,
I. I.
,
2009
, “
Hydrogen-Air Explosive Envelope Behavior in Confined Space at Different Leak Velocities
,”
Proceedings of the Third International Conference on Hydrogen Safety
,
Ajaccio, France
, Sept. 16–19, Paper No. 194.https://h2tools.org/sites/default/files/2019-08/Hydrogen-Air%20Explosive%20Envelope%20Behavior%20in%20Confined%20Space%20at%20Different%20Leak%20Velocities.pdf
12.
Merilo
,
E. G.
,
Groethe
,
M. A.
,
Colton
,
J. D.
, and
Chiba
,
S.
,
2011
, “
Experimental Study of Hydrogen Release Accidents in a Vehicle Garage
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
2436
2444
.10.1016/j.ijhydene.2010.04.056
13.
He
,
J.
,
Kokgil
,
E.
,
Wang
,
L.
, and
Ng
,
H. D.
,
2016
, “
Assessment of Similarity Relations Using Helium for Prediction of Hydrogen Dispersion and Safety in an Enclosure
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15388
15398
.10.1016/j.ijhydene.2016.07.033
14.
Pitts
,
W. M.
,
Yang
,
J. C.
, and
Fernandez
,
M. G.
,
2012
, “
Helium Dispersion Following Release in a 1/4-Scale Two-Car Residential Garage
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
5286
5298
.10.1016/j.ijhydene.2011.12.008
15.
Barley
,
C. D.
, and
Gawlik
,
K.
,
2009
, “
Buoyancy-Driven Ventilation of Hydrogen From Buildings: Laboratory Test and Model Validation
,”
Int. J. Hydrogen Energy
,
34
(
13
), pp.
5592
5603
.https://www.nrel.gov/docs/fy09osti/45804.pdf
16.
Birch
,
A. D.
,
Brown
,
D. R.
,
Dodson
,
M. G.
, and
Swaffield
,
F.
,
1984
, “
The Structure and Concentration Decay of High Pressure Jets of Natural Gas
,”
Combust. Sci. Technol.
,
36
(
5–6
), pp.
249
261
.10.1080/00102208408923739
17.
Papanikolaou
,
E.
,
Baraldi
,
D.
,
Kuznetsov
,
M.
, and
Venetsanos
,
A.
,
2012
, “
Evaluation of Notional Nozzle Approaches for CFD Simulations of Free-Shear Under Expanded Hydrogen Jets
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18563
18574
.10.1016/j.ijhydene.2012.09.135
18.
Birch
,
A. D.
,
Hughes
,
D. J.
, and
Swaffield
,
F.
,
1987
, “
Velocity Decay of High Pressure Jets
,”
Combust. Sci. Technol.
,
52
(
1–3
), pp.
161
171
.10.1080/00102208708952575
19.
Ewan
,
B. C. R.
, and
Moodie
,
K.
,
1986
, “
Structure and Velocity Measurements in Underexpanded Jets
,”
Combust. Sci. Technol.
,
45
(
5–6
), pp.
275
288
.10.1080/00102208608923857
20.
Stewart
,
J. R.
,
2020
, “
CFD Modelling of Underexpanded Hydrogen Jets Exiting Rectangular Shaped Openings
,”
Process Saf. Environ. Prot.
,
139
, pp.
283
296
.10.1016/j.psep.2020.04.043
21.
Schefer
,
R. W.
,
Houf
,
W. G.
,
Williams
,
T. C.
,
Bourne
,
B.
, and
Colton
,
J.
,
2007
, “
Characterization of High-Pressure, Underexpanded Hydrogen-Jet Flames
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2081
2093
.10.1016/j.ijhydene.2006.08.037
22.
Venetsanos
,
A. G.
,
Baraldi
,
D.
,
Adams
,
P.
,
Heggem
,
P. S.
, and
Wilkening
,
H.
,
2008
, “
CFD Modelling of Hydrogen Release, Dispersion and Combustion for Automotive Scenarios
,”
J. Loss Prev. Process Ind.
,
21
(
2
), pp.
162
184
.10.1016/j.jlp.2007.06.016
23.
Ivings
,
M. J.
,
Gant
,
S. E.
,
Saunders
,
C. J.
, and
Pocock
,
D. J.
,
2010
, “
Flammable Gas Cloud Build Up in a Ventilated Enclosure
,”
J. Hazard. Mater.
,
184
(
1–3
), pp.
170
176
.10.1016/j.jhazmat.2010.08.020
24.
Tchouvelev
,
A. V.
,
Buttner
,
W. J.
,
Melideo
,
D.
,
Baraldi
,
D.
, and
Angers
,
B.
,
2021
, “
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated enclosures -Phase 1
,”
Int. J. Hydrogen Energy
,
46
(
23
), pp.
12439
12454
.10.1016/j.ijhydene.2020.09.108
25.
Ivings
,
M.
,
Azhar
,
M.
,
Carey
,
C.
,
Lea
,
C.
,
Ledin
,
S.
,
Sinai
,
Y.
,
Skinner
,
C.
, and
Stephenson
,
P.
,
2004
, “
Outstanding Safety Questions Concerning the Use of Gas Turbines for Power Generation: Final Report on the CFD Modelling Programme of Work
,” Health and Safety Laboratory Report CM/04/02.
26.
Taherian
,
M.
, and
Mohammadian
,
A.
,
2021
, “
Buoyant Jets in Cross-Flows: Review, Developments, and Applications
,”
J. Mar. Sci. Eng.
,
9
(
1
), p.
61
.10.3390/jmse9010061
27.
Zhang
,
L.
, and
Yang
,
V.
,
2017
, “
Flow Dynamics and Mixing of a Transverse Jet in Crossflow - Part I: Steady Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082601
.10.1115/1.4035808
28.
Ruggles
,
A. J.
, and
Ekoto
,
I. W.
,
2012
, “
Ignitability and Mixing of Underexpanded Hydrogen Jets
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17549
17560
.10.1016/j.ijhydene.2012.03.063
29.
ANSYS
,
2020
, “
ANSYS Fluent Theory Guide
,”
ANSYS
,
Canonsburg, PA
.
30.
Colombini
,
C.
,
Martani
,
A.
,
Rota
,
R.
, and
Busini
,
V.
,
2020
, “
Ground Influence on High-Pressure Methane Jets: Practical Tools for Risk Assessment
,”
J. Loss Prev. Process Ind.
,
67
, p.
104240
.10.1016/j.jlp.2020.104240
31.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
32.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New - Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
33.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
34.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
35.
Ruffin
,
E.
,
Mouilleau
,
Y.
, and
Chaineaux
,
J.
,
1996
, “
Large Scale Characterisation of the Concentration Field of Supercritical Jets of Hydrogen and Methane
,”
Symposium IUTAM
,
Marseille, France
, July
15
17
.10.1016/0950-4230(96)00018-6
36.
Chen
,
C. J.
, and
Rodi
,
W.
,
1980
, “
Vertical Turbulent Buoyant Jets: A Review of Experimental Data
,”
NASA Sti/Recon Technical Report A
, 80, p.
23073
.https://ui.adsabs.harvard.edu/abs/1980ST IA...8023073C/abstract
37.
Gräf
,
L.
, and
Kleiser
,
L.
,
2012
, “
Flow Field Analysis of Anti-Kidney Vortex Film Cooling
,”
J. Therm. Sci.
,
21
(
1
), pp.
66
76
.10.1007/s11630-012-0520-y
You do not currently have access to this content.