Abstract

Hydrogen-fueled microturbines are being considered as part of the future green microgrid. However, the use of hydrogen as a fuel presents new challenges for selection and development of suitable high temperature materials for hydrogen combustion. The burning of hydrogen is expected to result in higher operating temperatures and higher than typically observed water vapor contents in exhaust gases versus burning natural gas. In this work, foil specimens of various Fe- and Ni-based alloys were oxidized in air + 10% H2O and air + 60% H2O for up to 5000 h at 700 °C to simulate the exhaust atmosphere of natural gas and hydrogen-fueled microturbines. The impact of alloy composition and water vapor content on the oxidation/volatilization induced loss of wall thickness was experimentally evaluated. Enhanced external oxidation and volatilization of Cr2O3 and Ti-doped Cr2O3 scales were observed in air + 60% H2O compared to air + 10% H2O. No significant impact of the higher water vapor content was observed on Al2O3 scales formed on Fe-based alumina-forming austenitic alloys. Lifetime modeling was employed to predict the combined effects of water vapor content, gas flow rates, temperature, and alloy composition on the oxidation-induced lifetime of the investigated materials.

References

1.
Abe
,
J. O.
,
Popoola
,
A. P. I.
,
Ajenifuja
,
E.
, and
Popoola
,
O. M.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.10.1016/j.ijhydene.2019.04.068
2.
Myers
,
D.
,
Ahluwalia
,
R.
,
Allendorf
,
M.
,
Atwater
,
H.
,
Autrey
,
T.
,
Ayers
,
K.
,
Borup
,
R.
,
Bowden
,
M.
,
Chou
,
K.
,
Furukawa
,
H.
,
Gennett
,
T.
,
Goldmeer
,
J.
,
Hodge
,
B.-M.
,
Krause
,
T.
,
Long
,
J.
,
Lord
,
A.
,
Maness
,
P.-C.
,
McDaniel
,
A.
,
Patel
,
P.
,
Pivovar
,
B.
,
San Marchi
,
C.
,
Singh
,
P.
,
Stavila
,
V.
, and
Hu
,
J.
,
2021
, “
Roundtable on Foundational Science for Carbon-Neutral Hydrogen Technologies (Technology Status Document)
,”
Office of Scientific and Technical Information (OSTI)
,
Oak Ridge, TN
, Report No.
1809223
.10.2172/1809223
3.
Siemens Gas and Power GmbH & Co. KG, 2022, “
Hydrogen Power and Heat With Siemens Energy Gas Turbines
,” Siemens Gas and Power GmbH & Co. KG, accessed Oct. 20, 2023, https://www.siemens-energy.com/global/en/home/publications/whitepaper/download-hydrogen-gas-turbine-readiness-white-paper.html
4.
International Energy Agency
,
2019
,
The Future of Hydrogen
,
International Energy Agency
,
Paris, France
.
5.
Abdalla
,
A. M.
,
Hossain
,
S.
,
Nisfindy
,
O. B.
,
Azad
,
A. T.
,
Dawood
,
M.
, and
Azad
,
A. K.
,
2018
, “
Hydrogen Production, Storage, Transportation and Key Challenges With Applications: A Review
,”
Energy Convers. Manage.
,
165
, pp.
602
627
.10.1016/j.enconman.2018.03.088
6.
Stefan
,
E.
,
Talic
,
B.
,
Larring
,
Y.
,
Gruber
,
A.
, and
Peters
,
T. A.
,
2022
, “
Materials Challenges in Hydrogen-Fuelled Gas Turbines
,”
Int. Mater. Rev.
,
67
(
5
), pp.
461
486
.10.1080/09506608.2021.1981706
7.
Pillai
,
R.
, and
Pint
,
B. A.
,
2021
, “
The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future With Green Hydrogen
,”
JOM
,
73
(
12
), pp.
3988
3997
.10.1007/s11837-021-04972-9
8.
Alvin
,
M. A.
,
2009
, “
Materials and Component Development for Advanced Turbine Systems
,”
Proc. ASME
Paper No. GT2009-59106.10.1115/GT2009-59106
9.
Opila
,
E. J.
,
Myers
,
D. L.
,
Jacobson
,
N. S.
,
Nielsen
,
I. M. B.
,
Johnson
,
D. F.
,
Olminsky
,
J. K.
, and
Allendorf
,
M. D.
,
2007
, “
Theoretical and Experimental Investigation of the Thermochemistry of CrO2(OH)2(g)
,”
J. Phys. Chem. A
,
111
(
10
), pp.
1971
1980
.10.1021/jp0647380
10.
Young
,
D. J.
, and
Pint
,
B. A.
,
2006
, “
Chromium Volatilization Rates From Cr2O3 Scales Into Flowing Gases Containing Water Vapor
,”
Oxid. Met.
,
66
(
3–4
), pp.
137
153
.10.1007/s11085-006-9030-1
11.
Pillai
,
R.
,
Dryepondt
,
S.
, and
Pint
,
B. A.
,
2019
, “
High Temperature Oxidation Lifetime Modeling of Thin-Walled Components
,”
ASME
Paper No. GT2019-90505.10.1115/GT2019-90505
12.
Asteman
,
H.
,
Svensson
,
J. E.
,
Johansson
,
L. G.
, and
Norell
,
M.
,
1999
, “
Indication Chromium Oxide Hydroxide Evaporation during Oxidation 304 L at 873 K Presence 10% Water Vapor
,”
Oxid. Met.
,
52
(
1/2
), pp.
95
111
.10.1023/A:1018875024306
13.
Romedenne
,
M.
,
Pillai
,
R.
,
Dryepondt
,
S.
, and
Pint
,
B. A.
,
2021
, “
Effect of Water Vapor on Lifetime of 625 and 120 Foils During Oxidation Between 650 and 800 °C
,”
Oxid. Met.
,
96
(
5–6
), pp.
589
612
.10.1007/s11085-021-10069-0
14.
Romedenne
,
M.
,
Pillai
,
R.
,
Dryepondt
,
S.
, and
Pint
,
B.
,
2022
, “
Oxidation Lifetime Modeling of 625 and 120 Foils After Long-Term Exposure in Flowing Air + 10% H2O at 700 and 800 °C
,”
Oxid. Met.
,
98
(
3–4
), pp.
305
324
.10.1007/s11085-022-10124-4
15.
Romedenne
,
M.
,
Haynes
,
A.
, and
Pillai
,
R.
,
2023
, “
Cyclic Oxidation Behavior of Selected Commercial NiCr-Alloys for Engine Exhaust Valves in Wet Air Environment Between 800 and 950 °C
,”
Corros. Sci.
,
211
, p.
110817
.10.1016/j.corsci.2022.110817
16.
Zurek
,
J.
,
Young
,
D. J.
,
Essuman
,
E.
,
Hansel
,
M.
,
Penkalla
,
H. J.
,
Niewolak
,
L.
, and
Quadakkers
,
W. J.
,
2008
, “
Growth and Adherence of Chromia Based Surface Scales on Ni-Base Alloys in High- and Low-pO(2) Gases
,”
Mater. Sci. Eng. A
,
477
(
1–2
), pp.
259
270
.10.1016/j.msea.2007.05.035
17.
Duan
,
R.
,
Jalowicka
,
A.
,
Unocic
,
K.
,
Pint
,
B. A.
,
Huczkowski
,
P.
,
Chyrkin
,
A.
,
Grüner
,
D.
,
Pillai
,
R.
, and
Quadakkers
,
W. J.
,
2017
, “
Predicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230
,”
Oxid. Met.
,
87
(
1–2
), pp.
11
38
.10.1007/s11085-016-9653-9
18.
Croll
,
J. E.
, and
Wallwork
,
G. R.
,
1969
, “
The Design of Iron-Chromium-Nickel Alloys for Use at High Temperatures
,”
Oxid. Met.
,
1
(
1
), pp.
55
71
.10.1007/BF00609924
19.
Kruger
,
K. L.
,
2017
, “
15 - HAYNES 282 Alloy
,”
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
A.
Di Gianfrancesco
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
511
545
.10.1016/B978-0-08-100552-1.00015-4
20.
Brill
,
U.
,
1992
, “
Neue Warmfeste Und Korrosionsbeständige Nickel-Basis-Legierung Für Temperaturen Bis 1200 °C
,”
Metall
,
46
(
8
), pp.
778
782
.https://api.semanticscholar.org/CorpusID:138154450
21.
Maziasz
,
P.
, and
Swindeman
,
R.
,
2003
, “
Selecting and Developing Advanced Alloys for Creep-Resistance for Microturbine Recuperator Applications
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
310
315
.10.1115/1.1499729
22.
Yamamoto
,
Y.
,
Ren
,
Q.-Q.
, and
Brady
,
M.
,
2022
, “
Role of Cr Content in Microstructure, Creep, and Oxidation Resistance of Alumina-Forming Austenitic Alloys at 850–900 °C
,”
Metals
,
12
(
5
), p.
717
.10.3390/met12050717
23.
Gindorf
,
C.
,
Singheiser
,
L.
, and
Hilpert
,
K.
,
2005
, “
Vaporisation of Chromia in Humid Air
,”
J. Phys. Chem. Solids
,
66
(
2–4
), pp.
384
387
.10.1016/j.jpcs.2004.06.092
24.
Romedenne
,
M.
,
Stack
,
P.
,
Pillai
,
R.
, and
Dryepondt
,
S.
,
2022
, “
Dryepondt Isothermal and Cyclic Oxidation of Haynes 282 Processed by Electron Beam Melting (EBM) and Laser Powder Bed Fusion (LPBF) in Dry Air at 800 and 950 °C
,”
JOM
,
74
(
4
), pp.
1
12
.10.1007/s11837-022-05201-7
25.
Pint
,
B. A.
,
Pillai
,
R.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2020
, “
Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2
,”
Oxid. Met.
,
94
(
5–6
), pp.
505
526
.10.1007/s11085-020-10004-9
26.
Chyrkin
,
A.
,
Sloof
,
W. G.
,
Pillai
,
R.
,
Galiullin
,
T.
,
Grüner
,
D.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
,
2015
, “
Modelling Compositional Changes in Nickel Base-Alloy 602 CA During High Temperature Oxidation
,”
Mater. High Temp.
,
32
(
1–2
), pp.
102
112
.10.1179/0960340914Z.00000000082
27.
Chyrkin
,
A.
,
Pillai
,
R.
,
Ackermann
,
H.
,
Hattendorf
,
H.
,
Richter
,
S.
,
Nowak
,
W.
,
Grüner
,
D.
, and
Quadakkers
,
W. J.
,
2015
, “
Modeling Carbide Dissolution in Alloy 602 CA During High Temperature Oxidation
,”
Corros. Sci.
,
96
, pp.
32
41
.10.1016/j.corsci.2015.03.019
28.
Pillai
,
R.
,
Chyrkin
,
A.
,
Galiullin
,
T.
,
Wessel
,
E.
,
Grüner
,
D.
, and
Quadakkers
,
W. J.
,
2017
, “
External α-Al2O3 Scale on Ni-Base Alloy 602 CA—Part II: Microstructural Evolution
,”
Corros. Sci.
,
127
, pp.
27
38
.10.1016/j.corsci.2017.07.021
29.
Pint
,
B. A.
,
Dryepondt
,
S.
,
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Ruan
,
B.
, and
McKeirnan
,
R. D.
,
2016
, “
Field and Laboratory Evaluations of Commercial and Next-Generation Alumina-Forming Austenitic Foil for Advanced Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122001
.10.1115/1.4033746
30.
Dryepondt
,
S.
, and
Pint
,
B. A.
,
2019
, “
Validation of Lifetime Models for Recuperator Foils Through Long-Term Laboratory and Engine Testing
,”
ASME
Paper No. GT2019-90927.10.1115/GT2019-90927
31.
Romedenne
,
M.
,
Pillai
,
R.
,
Dryepondt
,
S.
,
Lance
,
M.
, and
Pint
,
B.
,
2021
, “
High Temperature Oxidation Behavior of Fe, and Ni-Based Alloy Foils Water Vapor at 850 °C
,” Corrosion 2021, Apr. 19–30, Paper No.
NACE-2021-16594
.https://onepetro.org/NACECORR/proceedingsabstract/CORR21/2-CORR21/D021S009R003/464125
32.
Saunders
,
S. R. J.
,
Monteiro
,
M.
, and
Rizzo
,
F.
,
2008
, “
The Oxidation Behaviour of Metals and Alloys at High Temperatures in Atmospheres Containing Water Vapour: A Review
,”
Prog. Mater. Sci.
,
53
(
5
), pp.
775
837
.10.1016/j.pmatsci.2007.11.001
33.
Young
,
D. J.
,
2008
,
High Temperature Oxidation and Corrosion of Metals
, 1st ed.,
Elsevier
,
Oxford, UK
.
34.
Schiek
,
M.
,
Niewolak
,
L.
,
Nowak
,
W.
,
Meier
,
G. H.
,
Vaßen
,
R.
, and
Quadakkers
,
W. J.
,
2015
, “
Scale Formation of Alloy 602 CA During Isothermal Oxidation at 800-1100 °C in Different Types of Water Vapor Containing Atmospheres
,”
Oxid. Met.
,
84
(
5–6
), pp.
661
694
.10.1007/s11085-015-9595-7
You do not currently have access to this content.