Abstract

Gas turbines that are used as compressor drives are often operated in the part load regime because compressor stations are usually designed for operation with full power at extreme weather conditions. Consequently, these gas turbines must comply with strict emission regulations at unfavorably low turbine inlet temperatures. To extend the low-emission operation range of the premixed combustion systems, many gas turbines bypass a part of the compressed air upstream of the combustor and either blow it off into the exhaust stack or reinject it into the secondary combustion zone. This study presents a new approach that overcomes shortcomings by injecting the compressed air in the burner head in the vicinity of the primary combustion zone. This is particularly attractive for multi-can combustors. Atmospheric combustion tests are conducted for two different air injection designs. The first design features lower air injection velocity and the second features higher injection velocities. Both injection strategies are tested with the industrial MGT gas turbine can combustor. The full size burner is tested at atmospheric conditions in a burner test rig with a quartz flame tube and natural gas as fuel. The performance of the air bypass system is assessed by means of CO and NOx emission measurements for different air bypass ratios. Additionally, OH* chemiluminescence camera pictures are presented and compared to numerical calculations. It is found that the air injection in the annular vicinity of the swirl flame does not cause increased CO emissions by quenching or other effects.

References

1.
Sieker
,
T.
,
Petersen
,
N.
,
Bexten
,
T.
,
Wirsum
,
M.
,
Güdden
,
A.
,
Claßen
,
J.
,
Pischinger
,
S.
,
Lenz
,
C.
,
Krol
,
T.
, and
Friede
,
H.
,
2022
, “
Emission Footprint Analysis of Dispatchable Gas-Based Power Generation Technologies
,”
Vgbe Energy J.
, 7, pp.
32
43
.https://www.vgbe.energy/wpcontent/uploads/2022/09/vgbe-ej-2022-07-032-047-SIEKER.pdf
2.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.10.1201/9781420086058
3.
Correa
,
S. M.
,
1992
, “
Carbon Monoxide Emissions in Lean Premixed Combustion
,”
J. Propuls. Power
,
8
(
6
), pp.
1144
1151
.10.2514/3.11455
4.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Modeling of co-Emissions for Gas Turbine Combustors Operating at Part-Load Conditions
,”
J. Glob. Power Propuls. Soc.
,
2
, p.
C3N5OA
.10.22261/JGPPS.C3N5OA
5.
Cowell
,
L.
,
Roesch
,
J.
,
Camou
,
A.
,
Caron
,
T.
,
Ritchie
,
J.
, and
Carlos
,
I.
,
2019
, “
Field Qualification of an Improved DLE Gas Turbine Control Algorithm to Reduce Part Load Emissions
,”
ASME
Paper No. GT2019-91053. 10.1115/GT2019-91053
6.
Lam
,
K.
,
Liu
,
K.
,
Jayatunga
,
C.
, and
Helas
,
D.
,
2013
, “
Siemens SGT-300 Twin-Shaft DLE Engine Combustion System From Design to Engine Validation
,”
ASME
Paper No. GT2013-94378. 10.1115/GT2013-94378
7.
Cowell
,
L.
,
Reynolds
,
S.
,
Caron
,
T.
, and
Zhang
,
D.
,
2018
, “
Demonstration of Bleed Air Recirculation System to Improve Part Load Efficiency of Solar Mars® 100 DLE Industrial Gas Turbine
,”
ASME
Paper No. GT2018-75876. 10.1115/GT2018-75876
8.
Lechner
,
C.
, and
Seume
,
J.
, eds.,
2019
,
Stationäre Gasturbinen
,
Springer
,
Berlin, Heidelberg
.
9.
Therkorn
,
D.
,
Gassner
,
M.
,
Lonneux
,
V.
,
Zhang
,
M.
, and
Bernero
,
S.
,
2015
, “
CCPP Operational Flexibility Extension Below 30% Load Using Reheat Burner Switch-Off Concept
,”
ASME
Paper No. GT2015-42446. 10.1115/GT2015-42446
10.
Romoser
,
C. E.
,
Harper
,
J.
,
Wilson
,
M. B.
,
Simons
,
D. W.
,
Citeno
,
J. V.
, and
Lal
,
M.
,
2016
, “
E-Class Late Fuel Staging Technology Delivers Flexibility Leap
,”
ASME
Paper No. GT2016-57964.10.1115/GT2016-57964
11.
Steinbach
,
C.
,
Ulibarri
,
N.
,
Garay
,
M.
,
Lübcke
,
H.
,
Meeuwissen
,
T.
,
Haffner
,
K.
,
Aubry
,
J.
, and
Kodim
,
D.
,
2006
, “
Combustion Optimization for the ALSTOM GT13E2 Gas Turbine
,”
ASME
Paper No. GT2006-90943. 10.1115/GT2006-90943
12.
Eroglu
,
A.
,
Flohr
,
P.
,
Brunner
,
P.
, and
Hellat
,
J.
,
2009
, “
Combustor Design for Low Emissions and Long Lifetime Requirements
,”
ASME
Paper No. GT2009-59540. 10.1115/GT2009-59540
13.
Huitenga
,
H.
, and
Norster
,
E. R.
,
2014
, “
Development Approach to the Dry Low Emission Combustion System of MAN Diesel and Turbo Gas Turbines
,”
ASME
Paper No. GT2014-25164. 10.1115/GT2014-25164
14.
Tanimura
,
S.
,
Nose
,
M.
,
Ishizaka
,
K.
,
Takiguchi
,
S.
, and
Rodriguez
,
J.
,
2008
, “
Advanced Dry Low NOx Combustor for Mitsubishi G Class Gas Turbines
,”
ASME
Paper No. GT2008-50819. 10.1115/GT2008-50819
15.
Aoyama
,
K.
, and
Mandai
,
S.
,
1984
, “
Development of a Dry Low NOx Combustor for a 120-MW Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
795
800
.10.1115/1.3239641
16.
Yudha Wiranegara
,
R.
,
Igie
,
U.
,
Ghali
,
P.
,
Abudu
,
K.
,
Abbott
,
D.
, and
Hamilton
,
R.
,
2023
, “
Minimum Environmental Load Extension Through Compressed Air Extraction: Numerical Analysis of a Dry Low NOx Combustor
,”
Appl. Energy
,
336
, p.
120803
.10.1016/j.apenergy.2023.120803
17.
Reiss
,
F.
,
Wiers
,
S.-H.
,
Orth
,
U.
,
Aschenbruck
,
E.
,
Lauer
,
M.
, and
el Masalme
,
J.
,
2014
, “
Combustion System Development and Testing for MAN’s New Industrial Gas Turbines MGT 6100 and MGT 6200
,”
ASME
Paper No. GT2014-25907. 10.1115/GT2014-25907
18.
Ćosić
,
B.
,
Reiß
,
F.
,
Blümer
,
M.
,
Frekers
,
C.
,
Genin
,
F.
,
Pähr
,
J.
, and
Wassmer
,
D.
,
2022
, “
Development and Integration of the Dual Fuel Combustion System for the MGT Gas Turbine Family
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021021
.10.1115/1.4052504
19.
Ćosić
,
B.
,
Wassmer
,
D.
,
Kluß
,
D.
,
Jaeschke
,
A.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2022
, “
Experimental and Numerical Advancement of the MGT Combustor Towards Higher Hydrogen Capabilities
,”
ASME
Paper No. GT2022-82110. 10.1115/GT2022-82110
20.
Reumschüssel
,
J. M.
,
Zur Nedden
,
P. M.
,
von Saldern
,
J. G. R.
,
Reichel
,
T.
,
Ćosić
,
B.
, and
Paschereit
,
C. O.
,
2022
, “
Automatized Experimental Combustor Development Using Adaptive Surrogate Model-Based Optimization
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101019
.10.1115/1.4055272
21.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Kaiser
,
T. L.
,
Reichel
,
T.
,
Beuth
,
J. P.
,
Ćosić
,
B.
,
Genin
,
F.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2021
, “
NOx Emission Modelling for Lean Premixed Industrial Combustors With a Diffusion Pilot Burner
,”
ASME
Paper No. GT2021-59071. 10.1115/GT2021-59071
22.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. Combust.
,
16
(
1
), pp.
719
729
.10.1016/S0082-0784(77)80366-4
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.