Abstract

The strive to reduce the environmental impact of aviation has led to electrification and increasing demand for powerful on-board power electronic systems. These high-performance electrical components are bound to produce significant amounts of low-quality heat waste that, if not dissipated properly, will lead to malfunctioning and even permanent damage. For this reason, high-performance heat exchangers (HX) represent a key enabler for future advances in aircraft systems electrification and are vital to meet net zero goals and reduce the aviation's carbon footprint. For a given volume of the exchanger, the heat flow rate can be increased by adopting more sophisticated fluid domains. However, excessive geometrical complexity will lead to an increase in pressure losses, often resulting in inhomogeneous temperature distributions. In this paper, a novel optimization procedure is employed to maximize the efficiency of a high-performance heat exchanger, while minimizing overall pressure loss and temperature gradients. The optimization is performed with full three-dimensional high-fidelity computational flow simulations. The geometry of the fluid domain is constituted by triply periodic minimal surfaces (TPMS), with a parametrization based on thickness and aspect ratios, done by using the ntopology suite. To assess the performance gain, the topology-optimized design is compared against the datum case and a conventional serpentine design.

References

1.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer, Part A
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
2.
Li
,
W.
,
Yu
,
G.
, and
Yu
,
Z.
,
2020
, “
Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles
,”
Appl. Therm. Eng.
,
179
, p.
115686
.10.1016/j.applthermaleng.2020.115686
3.
Attarzadeh
,
R.
,
Rovira
,
M.
, and
Duwig
,
C.
,
2021
, “
Design Analysis of the “Schwartz D” Based Heat Exchanger: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
177
, p.
121415
.10.1016/j.ijheatmasstransfer.2021.121415
4.
Alteneiji
,
M.
,
Ali
,
M. I. H.
,
Khan
,
K. A.
, and
Al-Rub
,
R. K. A.
,
2022
, “
Heat Transfer Effectiveness Characteristics Maps for Additively Manufactured TPMS Compact Heat Exchangers
,”
Energy Storage Sav.
,
1
(
3
), pp.
153
161
.10.1016/j.enss.2022.04.005
5.
Femmer
,
T.
,
Kuehne
,
A. J.
, and
Wessling
,
M.
,
2015
, “
Estimation of the Structure Dependent Performance of 3-D Rapid Prototyped Membranes
,”
Chem. Eng. J.
,
273
, pp.
438
445
.10.1016/j.cej.2015.03.029
6.
Dixit
,
T.
,
Al-Hajri
,
E.
,
Paul
,
M. C.
,
Nithiarasu
,
P.
, and
Kumar
,
S.
,
2022
, “
High Performance, Microarchitected, Compact Heat Exchanger Enabled by 3D Printing
,”
Appl. Therm. Eng.
,
210
, p.
118339
.10.1016/j.applthermaleng.2022.118339
7.
Liang
,
D.
,
Shi
,
C.
,
Li
,
W.
,
Chen
,
W.
, and
Chyu
,
M. K.
,
2023
, “
Design, Flow Characteristics and Performance Evaluation of Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces
,”
Int. J. Heat Mass Transfer
,
201
, p.
123620
.10.1016/j.ijheatmasstransfer.2022.123620
8.
Mahmoud
,
D.
,
Tandel
,
S. R. S.
,
Yakout
,
M.
,
Elbestawi
,
M.
,
Mattiello
,
F.
,
Paradiso
,
S.
,
Ching
,
C.
,
Zaher
,
M.
, and
Abdelnabi
,
M.
,
2023
, “
Enhancement of Heat Exchanger Performance Using Additive Manufacturing of Gyroid Lattice Structures
,”
Int. J. Adv. Manuf. Technol.
,
126
(
9–10
), pp.
4021
4036
.10.1007/s00170-023-11362-9
9.
Peng
,
H.
,
Gao
,
F.
, and
Hu
,
W., 2019
, “
Design, Modeling and Characterization of Triply Periodic Minimal Surface Heat Exchangers With Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14.https://utw10945.utweb.utexas.edu/sites/default/files/2019/194%20Design%2C%20Modeling%20and%20Characterization%20of%20Triply%20Pe.pdf
10.
nTopology
, “
nTopology, Design the Future With Additive Manufacturing
,” nTopology, New York, accessed Dec. 11, 2023, https://www.ntop.com/
11.
Shahpar
,
S.
,
2004
, “
Design of Experiment, Screening and Response Surface Modelling to Minimise the Design Cycle Time
,” VKI, LS-2004-08, Belgium, Aug.https://www.researchgate.net/publication/267569041_Design_of_Experiment_Screening_and_Response_Surface_Modelling_to_Minimise_the_Design_Cycle_Time
12.
Afonso
,
P.
,
2021
, “
Ansys Fluent 2021 R2 Update
,” Ansys, Canonsburg, PA, accessed Dec. 11, 2023, https://www.ansys.com/content/dam/campaigns/abm/technip/fluent-workflows.pdf
13.
Marshall
,
S. D.
, and
Lee
,
P. S.
,
2022
, “
3D Topology Optimisation of Liquid-Cooled Microchannel Heat Sinks
,”
Therm. Sci. Eng. Prog.
,
33
, p.
101377
.10.1016/j.tsep.2022.101377
14.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
, 6th ed., John Wiley & Sons, Hoboken, NJ.
15.
Holman
,
J. P.
,
2009
,
Heat Transfer
, 10th ed., McGraw-Hill, New York.
16.
Bergles
,
A. E.
,
1998
, “
Augmentation of Heat Transfer
,”
Heat Exchanger Handbook
,
Begell House
,
New York
.
17.
Demargne
,
A. A. J.
,
Evans
,
R. O.
,
Tiller
,
P. J.
, and
Dawes
,
W. N.
,
2014
, “
Practical and Reliable Mesh Generation for Complex, Real-World Geometries
,”
AIAA
Paper No. 2014-0119.10.2514/6.2014-0119
18.
Nasti
,
A.
,
Voutchkov
,
I. I.
,
Toal
,
D. J. J.
, and
Keane
,
A. J.
,
2022
, “
Multi-Fidelity Simulation For Secondary Air System Seal Design in Aero Engines
,”
ASME
Paper No. GT2022-80391.10.1115/GT2022-80391
19.
Voutchkov
,
I.
, and
Keane
,
A.
,
2010
, “
Multi-Objective Optimization Using Surrogates
,”
Computational Intelligence in Optimization, Applications and Implementations
,
Springer
, Berlin, Heidelberg, pp.
155
175
.
20.
Ansys
,
2023
, “
Ansys SpaceClaim 3D Modeling Software
,” Ansys, Canonsburg, PA, accessed Dec. 11, 2023, https://www.ansys.com/products/3d-design/ansys-spaceclaim
21.
Ansys
,
2023
, “
Best Practices for Mesh Generation - Lesson 2
,” Ansys, Canonsburg, PA, accessed Dec. 7, 2023, https://courses.ansys.com/index.php/courses/best-practice-guidelines-for-cfd-simulations/lessons/best-practices-for-mesh-generation-lesson-2/
22.
Papukchiev
,
A.
,
Grishchenko
,
D.
, and
Kudinov
,
P.
,
2020
, “
On the Need for Conjugate Heat Transfer Modeling in Transient CFD Simulations
,”
Nucl. Eng. Des.
,
367
, p.
110796
.10.1016/j.nucengdes.2020.110796
You do not currently have access to this content.