Abstract

Thermal management presents an increasing challenge in future engineering systems, especially in applications like combined cycle precooling, waste heat recovery, and innovative propulsion systems. These systems face a growing demand for managing higher heat loads while coping with limited heat sink. Central to these thermal management systems is the heat exchanger, with microtube heat transfer emerging as a promising solution for future technologies. Microtube heat exchangers are becoming popular owing to their ability to significantly enhance the heat transfer surface area while maintaining a compact core volume. As the demand for high-performance, lightweight heat exchangers escalates, microtube heat exchangers are being designed to be increasingly compact yet highly loaded. This trend poses significant challenges to their structural integrity, particularly under harsh operational conditions. Flow-induced vibrations, a critical concern in the design of tubular heat exchangers, can lead to tube failures, compromising the safe operation of engineering systems. While the flow-induced vibrations of conventional-sized heat exchangers have been extensively studied, there is a noticeable gap in the research on similar phenomena in microtube heat exchangers. This paper details ongoing research at Reaction Engines Ltd (REL) to aid the design of safe and robust heat exchangers, focusing on the flow-induced vibrations in microtube heat exchangers and utilizing a cutting-edge laser vibrometry test facility. A predictive model, employing an unsteady flow simulation approach and eigenvalue analysis, has been formulated. A key observation is the distinctive coupled transverse–streamwise orbital motion in microtube heat exchangers, differing from the predominantly transverse direction of failures in conventional-sized heat exchangers.

References

1.
van Heerden
,
A. S.
,
Judt
,
D. M.
,
Jafari
,
S.
,
Lawson
,
C. P.
,
Nikolaidis
,
T.
, and
Bosak
,
D.
,
2022
, “
Aircraft Thermal Management: Practices, Technology, System Architectures, Future Challenges, and Opportunities
,”
Prog. Aerosp. Sci.
,
128
, p.
100767
.10.1016/j.paerosci.2021.100767
2.
Ryemill
,
M.
,
Bewick
,
C.
, and
Min
,
J. K.
,
2016
, “
The Rolls-Royce Plc, Ultrafan Heat Management Challenge
,”
2nd European Conference for Aerospace Sciences
, Brussels, Belgium, Sept.
25
30
.https://www.icas.org/ICAS_ARCHIVE/ICAS2016/data/papers/2016_0344_paper.pdf
3.
Freeman
,
J.
,
Osterkamp
,
P.
,
Green
,
M.
,
Gibson
,
A.
, and
Schiltgen
,
B.
,
2014
, “
Challenges and Opportunities for Electric Aircraft Thermal Management
,”
Aircr. Eng. Aerosp. Technol.: Int. J.
,
86
(
6
), pp.
519
524
.10.1108/AEAT-04-2014-0042
4.
Mahefkey
,
T.
,
Yerkes
,
K.
,
Donovan
,
B.
, and
Ramalingam
,
M. L.
,
2004
, “
Thermal Management Challenges for Future Military Aircraft Power Systems
,”
SAE Trans.
,
113
, pp.
1965
1973
.10.4271/2004-01-3204
5.
Shanmugasundaram
,
V.
,
Ramalingam
,
M.
, and
Donovan
,
B.
,
2007
, “
Thermal Management System With Energy Storage for an Airborne Laser Power System Application
,”
AIAA
Paper No. 2007-4817.10.2514/6.2007-4817
6.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
268
289
.10.1016/j.tsep.2018.04.017
7.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
2000
, “
Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design
,”
ASME Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.10.1115/1.3097347
8.
Murray
,
J. J.
,
Guha
,
A.
, and
Bond
,
A.
,
1997
, “
Overview of the Development of Heat Exchangers for Use in Air-Breathing Propulsion Pre-Coolers
,”
Acta Astronaut.
,
41
(
11
), pp.
723
729
.10.1016/S0094-5765(97)00199-9
9.
Webber
,
H.
,
Feast
,
S.
, and
Bond
,
A.
,
2009
, “
Heat Exchanger Design in Combined Cycle Engines
,”
J. Br. Interplanet. Soc.
,
62
, pp.
122
130
.https://ui.adsabs.harvard.edu/abs/2009JBIS...62..122W/abstract
10.
Varvill
,
R.
,
2010
, “
Heat Exchanger Development at Reaction Engines Ltd
,”
Acta Astronaut.
,
66
(
9–10
), pp.
1468
1474
.10.1016/j.actaastro.2009.11.010
11.
Varvill
,
R.
, and
Bond
,
A.
,
2003
, “
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
,”
J. Br. Interplanet. Soc.
,
56
(
3/4
), pp.
108
117
.https://ui.adsabs.harvard.edu/abs/2003JBIS...56..108V/abstract
12.
Varvill
,
R.
, and
Bond
,
A.
,
2004
, “
The Skylon Spaceplane
,”
J. Br. Interplanet. Soc.
,
57
, pp.
22
32
.https://ui.adsabs.harvard.edu/abs/2004JBIS...57...22V/abstract
13.
Varvill
,
R.
, and
Bond
,
A.
,
2008
, “
The Skylon Spaceplane: Progress to Realisation
,”
J. Br. Interplanet. Soc.
,
57
(
10
), pp.
412
418
.https://ui.adsabs.harvard.edu/abs/2008JBIS...61..412V/abstract
14.
Jivraj
,
F.
,
Varvill
,
R.
,
Bond
,
A.
, and
Paniagua
,
G.
,
2007
, “
The Scimitar Precooled Mach 5 Engine
,”
2nd European Conference for Aerospace Sciences
,
Brussels, Belgium
, July
1
6
.https://core.ac.uk/download/pdf/295856.pdf
15.
Reaction Engines Ltd
,
2023
, “
Case Study Rocket Cooled: Intercooler for Rocket Plume Technology
,” Reaction Engines Ltd, Abingdon, UK, accessed Aug. 16, 2024, https://reactionengines.co.uk/case-studies/nammo-westcott-case-study/
16.
Reaction Engines Ltd
,
2023
, “
Case Study Heat Capture: Effective Waste Heat Recovery System
,” Reaction Engines Ltd, Abingdon, UK, accessed Aug. 16, 2024, https://reactionengines.co.uk/case-studies/brunel-university/
17.
Kays
,
V. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchanger
, 3rd ed.,
McGraw-Hill
, New York.
18.
Rachkovskij
,
D. A.
,
Kussul
,
E. M.
, and
Talayev
,
S. A.
,
1998
, “
Heat Exchange in Short Microtubes and Micro Heat Exchangers With Low Hydraulic Losses
,”
Microsyst. Technol.
,
4
(
3
), pp.
151
158
.10.1007/s005420050120
19.
Saji
,
N.
,
Nagai
,
S.
,
Tsuchiya
,
K.
,
Asakura
,
H.
, and
Obata
,
M.
,
2001
, “
Development of a Compact Laminar Flow Heat Exchanger With Stainless Steel Micro-Tubes
,”
Phys. C
,
354
(
1–4
), pp.
148
151
.10.1016/S0921-4534(01)00064-8
20.
Muzychka
,
Y. S.
,
2007
, “
Constructal Multi-Scale Design of Compact Micro-Tube Heat Sinks and Heat Exchangers
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
245
252
.10.1016/j.ijthermalsci.2006.05.002
21.
Yang
,
C. Y.
, and
Lin
,
T. Y.
,
2007
, “
Heat Transfer Characteristics of Water Flow in Microtubes
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
432
439
.10.1016/j.expthermflusci.2007.05.006
22.
Kang
,
S. H.
,
Park
,
S. H.
,
Min
,
J. K.
,
Cho
,
J.
, and
Ha
,
M. Y.
,
2013
, “
Evaluation of Mechanical Integrity on the Brazing Joint of a Tube-Type Heat Exchanger With Considering Local Material Properties
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
3
), pp.
420
433
.10.1177/0954406212463845
23.
Kim
,
N. H.
,
Cho
,
J. R.
, and
Ra
,
Y. J.
,
2018
, “
Structural Integrity Analysis and Evaluation of Cooled Cooling Air Heat Exchanger for Aero Engine
,”
Int. J. Precis. Eng. Manuf.
,
19
(
4
), pp.
529
535
.10.1007/s12541-018-0064-5
24.
Weaver
,
D. T.
, and
Fitzpatrick
,
J. A.
,
1988
, “
A Review of Cross-Flow Induced Vibrations in Heat Exchanger Tube Arrays
,”
J. Fluids Struct.
,
2
(
1
), pp.
73
93
.10.1016/S0889-9746(88)90137-5
25.
Axisa
,
F.
,
Antunes
,
J.
, and
Villard
,
B.
,
1988
, “
Overview of Numerical Methods for Predicting Flow-Induced Vibration
,”
ASME J. Pressure Vessel Technol.
,
110
(
1
), pp.
6
14
.10.1115/1.3265570
26.
Schröder
,
K.
, and
Gelbe
,
H.
,
1999
, “
New Design Recommendations for Fluidelastic Instability in Heat Exchanger Tube Bundles
,”
J. Fluids Struct.
,
13
(
3
), pp.
361
379
.10.1006/jfls.1999.0208
27.
Tanaka
,
H.
, and
Takahara
,
S.
,
1981
, “
Fluid Elastic Vibration of Tube Array in Cross Flow
,”
J. Sound Vib.
,
77
(
1
), pp.
19
37
.10.1016/S0022-460X(81)80005-3
28.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
29.
Chen
,
S. S.
,
1984
, “
Guidelines for the Instability Flow Velocity of Tube Arrays in Crossflow
,”
J. Sound Vib.
,
93
(
3
), pp.
439
455
.10.1016/0022-460X(84)90340-7
30.
Yetisir
,
M.
, and
Weaver
,
D. S.
,
1993
, “
An Unsteady Theory for Fluidelastic Instability in an Array of Flexible Tubes in Cross-Flow. Part I: Theory
,”
J. Fluids Struct.
,
7
(
7
), pp.
751
766
.10.1006/jfls.1993.1044
31.
Connors
,
H. J.
,
1978
, “
Fluidelastic Vibration of Heat Exchanger Tube Arrays
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
347
353
.10.1115/1.3453921
32.
Hassan
,
M.
,
Gerber
,
A.
, and
Omar
,
H.
,
2010
, “
Numerical Estimation of Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041307
.10.1115/1.4002112
33.
Gillen
,
S.
, and
Meskell
,
C.
,
2008
, “
Variation of Fluidelastic Critical Velocity With Mass Ratio and Reynolds Number in a Densely Packed Normal Triangular Tube Array
,”
Flow-Induced Vibrations, Institute of Thermomechanics
,
Prague, Czech Republic
, June 30–July 3, pp.
193
198
.https://flair.monash.edu.au/intranet/proceedings/fiv2008/html/pdf/190.pdf
34.
Ghasemi
,
A.
, and
Kevlahan
,
N. R.
,
2017
, “
The Role of Reynolds Number in The Fluid-Elastic Instability of Tube Arrays
,”
J. Fluids Struct.
,
73
, pp.
16
36
.10.1016/j.jfluidstructs.2017.05.004
35.
Phan
,
H. M.
, and
He
,
L.
,
2022
, “
Efficient Modeling of Mistuned Blade Aeroelasticity Using Fully-Coupled Two-Scale Method
,”
J. Fluids Struct.
,
115
, p.
103777
.10.1016/j.jfluidstructs.2022.103777
36.
Phan
,
H. M.
, and
He
,
L.
,
2022
, “
Phasing Structural and Aerodynamic Mistuning for Leveraging Aeroelastic Performance
,”
ASME
Paper No. GT2022-82168.10.1115/GT2022-82168
37.
Phan
,
H. M.
,
2022
, “
Modeling of a Turbine Bladerow With Stagger Angle Variation Using the Multi-Fidelity Influence Superposition Method
,”
Aerosp. Sci. Technol.
,
121
, p.
107318
.10.1016/j.ast.2021.107318
38.
Phan
,
H. M.
, and
He
,
L.
,
2021
, “
Efficient Steady and Unsteady Flow Modeling for Arbitrarily Mis-Staggered Bladerow Under Influence of Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071009
.10.1115/1.4050364
39.
Phan
,
H. M.
,
Pekris
,
M. J.
, and
Chew
,
J. W.
,
2023
, “
Insights Into Frictional Brush Seal Hysteresis
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081010
.10.1115/1.4064151
40.
Hassan
,
M.
, and
Weaver
,
D.
,
2022
, “
Pitch and Pattern Effects on Streamwise Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p.
041403
.10.1115/1.4052399
You do not currently have access to this content.