Abstract

During the predesign phase of an aero-engine, interdisciplinary parametric studies are crucial for identifying an optimum engine. As innovative engine concepts emerge, it is essential to study trends aiming to minimize climate impact and one of its key contributors, fuel burn. The comparatively heavy disks, subjected to high thermal and mechanical loads, are central to this analysis due to their high impact on the overall module mass. This paper proposes an approach to achieve a first lightweight mechanical design of disks in the predesign phase. Based on a performance and aerodynamic baseline, the design space and physical boundary conditions are set. First, an initial mass-optimized disk is derived using simplified temperature profiles and stress calculations under the mechanical design point conditions. Subsequently, all the module disks are considered, and an estimation for each bore temperature is achieved through a novel loop over the entire module and all available operating points (OPs). By evaluating the temperature and stress profiles across various operating conditions, the low-cycle fatigue (LCF) life of each disk can be studied. As part of a highly modular engine predesign framework, this method allows for zooming capabilities of single disk calculations by prescribing individual boundary conditions. The proposed approach already yields an initial assessment of the rotors within a short runtime, facilitating simple iterations with the succeeding design phases due to method and tool commonalities. While the primary focus of this work is on compressor design, the principles presented are adaptable and expandable to turbine disk applications as well.

References

1.
Tong
,
M. T.
,
Halliwell
,
I.
, and
Ghosn
,
L. J.
,
2004
, “
A Computer Code for Gas Turbine Engine Weight and Disk Life Estimation
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
265
270
.10.1115/1.1691980
2.
Donus
,
F.
,
Schaber
,
R.
,
Schmidt
,
K.
, and
Staudacher
,
S.
,
2010
, “
Accuracy of Analytical Engine Weight Estimation During the Conceptual Design Phase
,”
ASME
Paper No. GT2010-23774.10.1115/GT2010-23774
3.
Armand
,
S. C.
,
1995
, “
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-4693
.https://ntrs.nasa.gov/citations/19960021252
4.
Jones
,
M. J.
,
Bradbrool
,
S. J.
, and
Nurney
,
K.
,
2002
, “
A Preliminary Engine Design Process for an Affordable Capability
,” Defense Technical Information Center Compilation Part Notice, Paris, France, Report No.
ADP014191
.https://apps.dtic.mil/sti/tr/pdf/ADP014191.pdf
5.
Schaber
,
R.
,
Salpingidou
,
C.
, and
Klingels
,
H.
,
2019
, “
From Interdisciplinary Propulsion System Parameter Studies to Initial Module Design—An Integrated Approach for Conceptual Design
,” Proceedings of the 24th ISABE Conference, Canberra, Australia, Sept. 22–27, ISABE Paper No. 2019-24040.
6.
Kolias
,
I.
,
Aretakis
,
N.
,
Alexiou
,
A.
, and
Mathioudakis
,
K.
,
2023
, “
A Tool for the Design of Turbomachinery Disks for an Aero-Engine Preliminary Design Framework
,”
Aerospace
,
10
(
5
), p.
460
.10.3390/aerospace10050460
7.
Jeschke
,
P.
,
Kurzke
,
J.
,
Schaber
,
R.
, and
Riegler
,
C.
,
2004
, “
Preliminary Gas Turbine Design Using the Multidisciplinary Design System MOPEDS
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
258
264
.10.1115/1.1639009
8.
Salpingidou
,
C.
,
Schaber
,
R.
,
Klingels
,
H.
, and
Geiger
,
P.
,
2020
, “
Mechanical Design in an Interdisciplinary Predesign Tool
,”
ASME
Paper No. GT2020-14633.10.1115/GT2020-14633
9.
Bretschneider
,
S.
,
2011
, “
Knowledge-Based Preliminary Design of Aero-Engine Gas-Generators
,” Ph.D. thesis,
Universität Stuttgart
, Stuttgart, Germany.
10.
Kurzke
,
J.
, 2007, An Utility for GasTurb 11;
GasTurb Details 5 Software Manual
, GasTurb GmbH, Aachen, Germany.
11.
Owen
,
J. M.
,
Tang
,
H.
, and
Lock
,
G. D.
,
2018
, “
Buoyancy-Induced Heat Transfer Inside Compressor Rotors: Overview of Theoretical Models
,”
Aerospace
,
5
(
1
), p.
32
.10.3390/aerospace5010032
12.
Sultanian
,
B. K.
,
2018
,
Gas Turbines—Internal Flow Systems Modeling
,
Cambridge University Press
, Cambridge, UK.10.1017/9781316755686
13.
Helcig
,
C.
,
2018
, “
Experimentelle Untersuchung des konvektiven Wärmeübergangs an rotierenden scheiben
,” Ph.D. thesis,
Universität Stuttgart
, Stuttgart, Germany.
14.
Weckend
,
A. P.
,
2013
, “
Stabilitätsbetrachtungen mittels stufenweiser Verdichtermodellierung in der Triebwerksleistungsrechnung
,” Ph.D. thesis,
Universität Stuttgart
, Stuttgart, Germany.
15.
Gyekenyesi
,
J. Z.
,
2014
, “
NASALIFE Component Fatigue and Creep Life Prediction Program
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA/TM—2005-213886/REV2 2015
.https://ntrs.nasa.gov/api/citations/20140010774/downloads/20140010774.pdf
16.
Downing
,
S. D.
, and
Socie
,
D.
,
1982
, “
Simple Rainflow Counting Algorithms
,”
Int. J. Fatigue
,
4
(
1
), pp.
31
40
.10.1016/0142-1123(82)90018-4
17.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.10.1115/1.4009458
You do not currently have access to this content.