Abstract

In this study, combustion and emission characteristics in the test rig of microgas turbine with liquid ammonia fuel injection using the twin-fluid atomizers (TFAs) are investigated and compared with the previous result using the pressure-swirl atomizer (PSA). The combustion situation was simulated using the test rig of microgas turbine, and experiments were conducted by controlling the ratio of ammonia and methane to create a pure ammonia combustion situation. The TFA has spray cone angles of 60 deg, 90 deg, and 120 deg, and its combustion characteristics were analyzed and compared with the PSA. At 60 deg TFA, the blow-off of ammonia flame occurred before the pure ammonia combustion stage, and the flame blow-off occurred after the pure ammonia combustion at the 90 deg and 120 deg TFAs. This means that the blow-off of ammonia flame easily occurred when the spray cone angle of the atomizer is small, because the recirculation flow to the upstream of ammonia flame is weak. In addition, the 90 deg and 120 deg TFAs showed significantly reduced emissions of NO, N2O, and unburned NH3 compared to the 60 deg TFA and PSA. This can be concluded that a large spray cone angle forms a strong recirculation flow within the combustor, and emissions are reduced because the high-temperature zone sufficiently stays in the primary combustion zone.

References

1.
Medina-Valera
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
2.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
3.
Barnes
,
M.
,
2001
, “
Stresses in Solenoids
,”
J. Appl. Phys.
,
48
(
5
), pp.
2000
2008
.
4.
Rooney
,
P. D.
,
1987
, “
Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity
,”
Combust. Sci. Technol.
,
59
(
1–3
), pp.
123
141
.10.1080/00102208808947092
5.
Um
,
D. H.
,
Joo
,
J. M.
,
Lee
,
S.
, and
Kwon
,
O. C.
,
2013
, “
Combustion Stability Limits and NOx Emissions of Non-Premixed Ammonia-Substituted Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14854
14865
.10.1016/j.ijhydene.2013.08.140
6.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
7.
Pratt
,
D. T.
,
1967
, “
Performance of Ammonia-Fired Gas-Turbine Combustors
,” College of Engineering, University of California, Berkely, CA.
8.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
9.
Kurata
,
O.
,
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kawano
,
M.
, et al.,
2019
, “
Development of a Wide Range-Operable, Rich-Lean Low-NOX Combustor for NH3 Fuel Gas-Turbine Power Generation
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4587
4595
.10.1016/j.proci.2018.09.012
10.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
,
Hayakawa
,
A.
, and
Okafor
,
E. C.
,
2018
, “
NOX Reduction in a Swirl Combustor Firing Ammonia for a Micro Gas Turbine
,”
ASME
Paper No. GT2018-75993.10.1115/GT2018-75993
11.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
12.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
(
2
), pp.
1362
1371
.10.1016/j.apenergy.2016.02.073
13.
Ito
,
S.
,
Uchida
,
M.
,
Kato
,
M.
,
Fujimori
,
T.
, and
Kobayashi
,
H.
,
2019
, “
Emission Characteristics of a Lean-Premixed Ammonia/Natural-Gas Gas-Turbine Combustor and Effect of Secondary Ammonia Injection
,”
Mech. Eng. J.
,
6
(
5
), p.
19
00266
.10.1299/mej.19-00266
14.
Okafor
,
E. C.
,
Somarathne
,
K. D. K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimura
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOX and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
15.
Gonçalo
,
P.
,
Rocha
,
R. C.
,
Franco
,
M. C.
,
Mendes
,
M. A. A.
,
Fernandes
,
E. C.
,
Coelho
,
P. J.
, and
Bai
,
X. S.
,
2021
, “
Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner
,”
Energy Fuels
,
35
(
9
), pp.
7201
7216
.10.1021/acs.energyfuels.0c03872
16.
Khateeb
,
A.
,
Guiberti
,
T.
,
Wang
,
G.
,
Boyette
,
W.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W.
,
2021
, “
Stability Limits and NO Emissions of Premixed Swirl Ammonia-Air Flames Enriched With Hydrogen or Methane at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
46
(
21
), pp.
11969
11981
.10.1016/j.ijhydene.2021.01.036
17.
Viswamithra
,
V.
,
Gurunadhan
,
M.
, and
Menon
,
S.
,
2023
, “
Expanding Swirl Combustor Operability on Methane-Ammonia-Air Mixtures Using a Distributed Fuel Injection Technique and Inlet Preheating
,”
Int. J. Hydrogen Energy
,
48
(
3
), pp.
1189
1201
.10.1016/j.ijhydene.2022.09.243
18.
Shu
,
B.
,
He
,
X.
,
Ramos
,
C. F.
,
Fernandes
,
R. X.
, and
Costa
,
M.
,
2021
, “
Experimental and Modeling Study on the Auto-Ignition Properties of Ammonia/Methane Mixtures at Elevated Pressures
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
261
268
.10.1016/j.proci.2020.06.291
19.
Pochet
,
M.
,
Dias
,
V.
,
Moreau
,
B.
,
Foucher
,
F.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2019
, “
Experimental and Numerical Study, Under LTC Conditions, of Ammonia Ignition Delay With and Without Hydrogen Addition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
621
629
.10.1016/j.proci.2018.05.138
20.
Montgomery
,
M. J.
,
Kwon
,
H.
,
Dreyer
,
J. A. H.
,
Xuan
,
Y.
,
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2021
, “
Effect of Ammonia Addition on Suppressing Soot Formation in Methane Co-Flow Diffusion Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2497
2505
.10.1016/j.proci.2020.06.094
21.
Okafor
,
E. C.
,
Somarathne
,
K. D. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient Low-NOX Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
22.
Somarathne
,
K. D. K. A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/Air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
14
), pp.
27388
27399
.10.1016/j.ijhydene.2017.09.089
23.
Fan
,
Y.
,
Ohtomo
,
M.
,
Kasuga
,
S.
,
Iki
,
N.
,
Kurata
,
O.
,
Tsujimura
,
T.
, and
Furutani
,
H.
,
2021
, “
Characteristics of Ammonia Spray Injected by Pressure-Swirl Atomizers
,”
Int. Conf. Liq. Atomization Spray Syst.
,
1
(
1
), pp.
172
178
.10.2218/iclass.2021.5930
24.
NEDO
,
2022
, “
NEDO News Release
,” New Energy and Industrial Technology Development Organization, Japan, accessed June 17, 2024, https://www.nedo.go.jp/news/press/AA5_101502.html (in Japanese)
25.
Okafor
,
E. C.
,
Yamashita
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
,
Tsujimura
,
T.
,
Uchida
,
M.
,
Ito
,
S.
, and
Kobayashi
,
H.
,
2020
, “
Flame Stability and Emissions Characteristics of Liquid Ammonia Spray Co-Fired With Methane in a Single Stage Swirl Combustor
,”
Fuel
,
287
, p.
119433
.10.1016/j.fuel.2020.119433
26.
Okafor
,
E. C.
,
Kurata
,
O.
,
Yamashita
,
H.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Iki
,
N.
,
Hayakawa
,
A.
,
Ito
,
S.
,
Uchida
,
M.
, and
Kobayashi
,
H.
,
2021
, “
Liquid Ammonia Spray Combustion in Two-Stage Micro Gas Turbine Combustors at 0.25 MPa; Relevance of Combustion Enhancement to Flame Stability and NOX Control
,”
Appl. Energy Combust. Sci.
,
7
, p.
100038
.10.1016/j.jaecs.2021.100038
27.
Okafor
,
E. C.
,
Yamashita
,
H.
,
Kurata
,
O.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Iki
,
N.
,
Hayakawa
,
A.
,
Ito
,
S.
,
Uchida
,
M.
, and
Kobayashi
,
H.
,
2022
, “
Numerical Investigation of the Diluting Effects of Secondary Air on the Primary Combustion Zone of Two-Stage Rich-Lean Ammonia Gas Turbine Combustors
,”
Proceedings of the 14th Asia-Pacific Conference on Combustion
, Kaohsiung, Taiwan, May
14
18
.
28.
Japan Science and Technology Agency
,
2019
, “
Cross-Ministerial Strategic Innovation Promotion Program, Energy Carrier: Final Report
,” Japan Science and Technology Agency, Japan, accessed June 17, 2024, https://www.jst.go.jp/sip/k04_result.html (in Japanese)
You do not currently have access to this content.