Abstract

The European Union made new CO2 limits for heavy-duty vehicles mandatory in 2019, aiming to reduce the average tailpipe CO2 emissions by 15% in 2025 and by 30% in 2030, relative to the 2019 baseline. To meet these challenges, new technologies are needed to further reduce the fuel consumption of new heavy-duty trucks (“tank to wheel”) by using more efficient engines. The present study shows the pathways to improve thermal efficiency through better mixture formation and air utilization. This is achieved by designing a new piston bowl shape that has been numerically optimized iteratively to improve the air/fuel mixing by carefully considering the interaction between the fuel spray plume and the piston bowl. The computational fluid dynamics (CFD) model was calibrated using data from experimental studies with a heavy-duty single-cylinder diesel engine in the best efficiency and rated power operation. Heat transfer and turbulence models are studied to determine their influence on the combustion process and NOX emissions. Indicated thermal efficiency and air utilization were used to evaluate the performance of the piston bowl shape. For three different bowl shapes, the fuel spray interaction with the piston bowl was investigated and compared with the base bowl shape with a compression ratio CR = 18.3. Moreover, the effect of a higher CR of 21 on performance and mixture formation was analyzed for the optimized bowl shape. The higher CR of 21 was attained by a geometrically similar reduction of the optimized piston bowl. The results of the numerical and experimental investigations show that a CR of 21 leads to an increase in the indicated thermal efficiency of ∼3% in absolute values.

References

1.
Rogelj
,
J.
,
Fricko
,
O.
,
Meinshausen
,
M.
,
Krey
,
V.
,
Zilliacus
,
J. J.
, and
Riahi
,
K.
,
2017
, “
Understanding the Origin of Paris Agreement Emission Uncertainties
,”
Nat. Commun.
,
8
(
1
), pp.
1
12
.10.1038/ncomms15748
2.
Delgado
,
O.
, and
Gonzalez
,
F.
,
2018
, “
CO2 Emissions and Fuel Consumption Standards for Heavy-Duty Vehicles in the European Union
,”
ICCT
,
8
(
1
), pp.
1
12
.https://theicct.org/wpcontent/uploads/2021/06/Efficiency_standards_HDVs_EU_Briefing_051618.pdf
3.
Teter
,
J.
,
Cazzola
,
P.
,
Gul
,
T.
,
Mulholland
,
E.
,
Le Feuvre
,
P.
,
Bennett
,
S.
,
Hugues
,
P.
,
Lagarde
,
Z.
,
Kraayvanger
,
V.
,
Bryant
,
T.
, et al.,
2017
, “
The Future of Trucks: Implications for Energy and the Environment
,” International Energy Agency, Paris, France.https://iea.blob.core.windows.net/assets/a4710daf-9cd2-4bdc-b5cf-5141bf9020d1/TheFutureofTrucksImplicationsforEnergyandtheEnvironment.pdfhttps://iea.blob.core.windows.net/assets/a4710daf-9cd2-4bdc-b5cf-5141bf9020d1/TheFutureofTrucksImplicationsforEnergyandtheEnvironment.pdf
4.
Muncrief
,
R.
, and
Sharpe
,
B.
,
2015
, “
Overview of the Heavy-Duty Vehicle Market and CO2 Emissions in the European Union
,”
The International Council on Clean Transportation
,
Washington, DC
.https://theicct.org/sites/default/files/publications/ICCT_EU-HDV_mkt-analysis_201512.pdf
5.
Rodríguez
,
F.
,
2019
, “
CO2 Standards for Heavy-Duty Vehicles in the European Union
,”
International Council Clean Transportation
,
Washington, DC
.https://theicct.org/wp-content/uploads/2021/06/CO2-HDV-EU-Policy-Update-2019_04_17.pdf
6.
Vandyne
,
E. A.
, and
Riley
,
M. B.
,
2007
, “
An Advanced Turbocharging System for Improved Fuel Efficiency
,”
ASME
Paper No. ICEF2007-1808.10.1115/ICEF2007-1808
7.
Ramesh
,
A. K.
,
Gosala
,
D. B.
,
Allen
,
C.
,
Joshi
,
M.
,
McCarthy
,
J.
, Jr
,
Farrell
,
L.
,
Koeberlein
,
E. D.
, and
Shaver
,
G.
,
2018
, “
Cylinder Deactivation for Increased Engine Efficiency and After treatment Thermal Management in Diesel Engines
,”
SAE
Technical Paper No. 2018-01-0384.10.4271/2018-01-0384
8.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p. 042004.10.1115/1.4030108
9.
Norouzi
,
A.
,
Heidarifar
,
H.
,
Shahbakhti
,
M.
,
Koch
,
C. R.
, and
Borhan
,
H.
,
2021
, “
Model Predictive Control of Internal Combustion Engines: A Review and Future Directions
,”
Energies
,
14
(
19
), p.
6251
.10.3390/en14196251
10.
Lerin
,
C.
,
Curran
,
S.
,
Moses-DeBusk
,
M.
,
Cook
,
A.
,
Boronat Colomer
,
V.
,
Kaul
,
B.
, and
Deter
,
D.
,
2021
, “
Hardware-in-the-Loop Investigation of Emissions Challenges in Hybrid Medium-and Heavy-Duty Powertrains Using a Pre-Production Diesel-Electric Parallel Hybrid System With and Without Stop-Start Operation
,”
ASME
Paper No. ICEF2021-68317.10.1115/ICEF2021-68317
11.
Geng
,
P.
,
Cao
,
E.
,
Tan
,
Q.
, and
Wei
,
L.
,
2017
, “
Effects of Alternative Fuels on the Combustion Characteristics and Emission Products From Diesel Engines: A Review
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
523
534
.10.1016/j.rser.2016.12.080
12.
Xu
,
L.
,
Bai
,
X.-S.
,
Li
,
Y.
,
Treacy
,
M.
,
Li
,
C.
,
Tunestål
,
P.
,
Tunér
,
M.
, and
Lu
,
X.
,
2020
, “
Effect of Piston Bowl Geometry and Compression Ratio on in-Cylinder Combustion and Engine Performance in a Gasoline Direct-Injection Compression Ignition Engine Under Different Injection Conditions
,”
Appl. Energy
,
280
, p.
115920
.10.1016/j.apenergy.2020.115920
13.
Benajes
,
J.
,
Pastor
,
J. V.
,
García
,
A.
, and
Monsalve-Serrano
,
J.
,
2015
, “
An Experimental Investigation on the Influence of Piston Bowl Geometry on Rcci Performance and Emissions in a Heavy-Duty Engine
,”
Energy Convers. Manage.
,
103
, pp.
1019
1030
.10.1016/j.enconman.2015.07.047
14.
Tang
,
M.
,
Pei
,
Y.
,
Guo
,
H.
,
Zhang
,
Y.
,
Torelli
,
R.
,
Probst
,
D.
,
Fütterer
,
C.
, and
Traver
,
M.
,
2021
, “
Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
, 143(6), p. 062309.10.1115/1.4050419
15.
Koten
,
H.
,
Yilmaz
,
M.
, and
Gul
,
M.
,
2010
, “
A CFD Study and Geometrical Improvement on Heavy Duty Diesel Engine for Ultra-Low Emissions
,”
ASME
Paper No. IMECE2010-40368.10.1115/IMECE2010-40368
16.
Lim
,
J.
, and
Min
,
K.
,
2005
, “
The Effects of Spray Angle and Piston Bowl Shape on Diesel Engine Soot Emissions Using 3D CFD Simulation
,”
SAE
Paper No. 2005-01-2117.10.4271/2005-01-2117
17.
Addepalli
,
S. K.
,
Pamminger
,
M.
,
Scarcelli
,
R.
, and
Wallner
,
T.
,
2021
, “
Numerical Investigation of the Impact of Spray–Bowl Interaction on Thermal Efficiency of a Gasoline Compression Ignition Engine
,”
ASME
Paper No. ICEF2021-67851.10.1115/ICEF2021-67851
18.
Funayama
,
Y.
,
Nakajima
,
H.
, and
Shimokawa
,
K.
,
2016
, “
A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance
,”
SAE
Technical Paper No. 2016-01-0722.10.4271/2016-01-0722
19.
Enya
,
K.
, and
Uchida
,
N.
,
2019
, “
Enhancing Peak Firing Pressure Limit for Achieving Better Brake Thermal Efficiency of a Diesel Engine
,”
SAE
Technical Paper No. 2019-01-2180.10.4271/2019-01-2180
20.
Herrmann
,
H.-O.
,
Kožuch
,
P.
,
Lettmann
,
H.
, and
Brünemann
,
R.
,
2016
, “
The Latest Heavy-Duty Engine Generation From Mercedes-Benz Part 2: Combustion and Emissions
,”
MTZ Worldwide
,
77
(
7–8
), pp.
58
63
.10.1007/s38313-016-0067-5
21.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
,
Converge 2.4 Manual
,
Convergent Science
,
Madison, WI
.
22.
Graziano
,
B.
,
Heuser
,
B.
,
Kremer
,
F.
,
Pischinger
,
S.
, and
Rohs
,
H.
,
2015
, “
The Oxidation Potential Number: An Index to Evaluate Inherent Soot Reduction in di Diesel Spray Plumes
,”
SAE Int. J. Engines
,
9
(
1
), pp.
222
236
.10.4271/2015-01-1934
23.
Sircar
,
A.
,
Paul
,
C.
,
Ferreyro-Fernandez
,
S.
,
Imren
,
A.
, and
Haworth
,
D. C.
,
2017
, “
An Assessment of CFD-Based Wall Heat Transfer Models in Piston Engines
,”
Pennsylvania State University
,
University Park, PA
.
24.
Sodja
,
J.
,
2007
,
Turbulence Models in CFD
,
University of Ljubljana
,
Ljubljana
, pp.
1
18
.
25.
Tao
,
F.
,
Reitz
,
R. D.
, and
Foster
,
D. E.
,
2007
, “
Revisit of Diesel Reference Fuel (n-Heptane) Mechanism Applied to Multidimensional Diesel Ignition and Combustion Simulations
,”
Seventeenth International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress
, Detroit, MI, Apr. 15.https://www.researchgate.net/publication/228941520_Revisit_of_Diesel_Reference_Fuel_n-Heptane_Mechanism_Applied_to_Multidimensional_Diesel_Ignition_and_Combustion_Simulations
You do not currently have access to this content.