Abstract

Computational fluid dynamics (CFD) studies for annular seals continues to gain popularity as a powerful tool for seal rotordynamic analysis, but the wide variety in setup and modeling choices without sufficient justification prevent more widespread use of these methods. This study applies the quasi-steady (QS) method for rotordynamic coefficient prediction to an incompressible grooved seal model in order to rigorously quantify the influence of various prominent modeling choices on prediction results. Variation of the upstream region configuration confirms the dependence of the cross-coupled stiffness on the development of circumferential velocity, which is a strong function of upstream geometry. An axial inlet upstream region is shown to be a sufficient approximation to a radial inlet with axial symmetry, representative of a back-to-back seal configuration. Significant stiffness variation is observed for particular downstream region configurations, though the additional pressure perturbation is mostly confined to the downstream region itself. When no downstream region is included, sensitivity to the amount of pressure profile blending enforced at the seal outlet plane is demonstrated, further underscoring the need for an experimentally accurate downstream geometry. This is the first paper dedicated to a quantitative sensitivity investigation of this nature specific to incompressible grooved seals that examines upstream and downstream region configuration, rotor centrifugal growth effects, and modeling whirl amplitude. Use of these results will foster more accurate application of the QS method for rotordynamic predictions of incompressible grooved seals, ultimately enabling more widespread use of CFD methods for general seals predictions.

References

1.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
2.
Wu
,
D.
,
Jiang
,
X.
,
Li
,
S.
, and
Wang
,
L.
,
2016
, “
A New Transient CFD Method for Determining the Dynamic Coefficients of Liquid Annular Seals
,”
J. Mech. Sci. Technol.
,
30
(
8
), pp.
3477
3486
.10.1007/s12206-016-0707-3
3.
Li
,
Z.
,
Fang
,
Z.
, and
Li
,
J.
,
2020
, “
A Comparison of Static and Rotordynamic Characteristics for Two Types of Liquid Annular Seals With Parallelly Grooved Stator/Rotor
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091012
.10.1115/1.4048144
4.
Gu
,
Q.
,
Yang
,
J.
,
Zhang
,
W.
, and
Zhang
,
M.
,
2021
, “
An Accelerating Sweep Frequency Excitation Method for the Rotordynamic Coefficients Identification of Annular Gas Seals Based on Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091021
.10.1115/1.4051101
5.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2018
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
.10.1115/1.4038437
6.
San Andrés
,
L.
,
Wu
,
T.
,
Maeda
,
H.
, and
Tomoki
,
O.
,
2018
, “
A Computational Fluid Dynamics Modified Bulk Flow Analysis for Circumferentially Shallow Grooved Liquid Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012504
.10.1115/1.4037614
7.
Pugachev
,
A. O.
,
Kleinhans
,
U.
, and
Gaszner
,
M.
,
2012
, “
Prediction of Rotordynamic Coefficients for Short Labyrinth Gas Seals Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
062501
.10.1115/1.4005971
8.
Snyder
,
T.
, and
Santos
,
I.
,
2021
, “
Rotordynamic Force Estimation of Turbulent, Annular Seals Using OpenFOAM®
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
3
), p.
119
.10.1007/s40430-021-02814-y
9.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
10.
Wagner
,
N. G.
,
Steff
,
K.
,
Gausmann
,
R.
, and
Schmidt
,
M.
,
2009
, “
Investigations on the Dynamic Coefficients of Impeller Eye Labyrinth Seals
,”
Proceedings of the Thirty-Eighth Turbomachinery Symposium
,
Turbomachinery Laboratories, Texas A&M University
,
College Station, TX
, Sept. 14–17, pp.
53
70
.10.21423/R18061
11.
Tsukuda
,
T.
,
Hirano
,
T.
,
Watson
,
C.
,
Morgan
,
N. R.
,
Weaver
,
B. K.
, and
Wood
,
H. G.
,
2018
, “
A Numerical Investigation of the Effect of Inlet Preswirl Ratio on Rotordynamic Characteristics of Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082506
.10.1115/1.4039360
12.
Thorat
,
M. R.
, and
Hardin
,
J. R.
,
2020
, “
Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021004
.10.1115/1.4044760
13.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics
,
Wiley
,
New York
.
14.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.10.1115/1.2929166
15.
Subramanian
,
S.
,
Sekhar
,
A.
, and
Prasad
,
B.
,
2016
, “
Rotordynamic Characteristics of Rotating Labyrinth Gas Turbine Seal With Centrifugal Growth
,”
Tribol. Int.
,
97
, pp.
349
359
.10.1016/j.triboint.2016.01.003
16.
Subramanian
,
S.
,
Sekhar
,
A.
, and
Prasad
,
B.
,
2017
, “
Rotordynamic Characterization of Rotating Labyrinth Gas Turbine Seals With Radial Growth: Combined Centrifugal and Thermal Effects
,”
Int. J. Mech. Sci.
,
123
, pp.
1
19
.10.1016/j.ijmecsci.2017.01.033
17.
Marquette
,
O. R.
,
Childs
,
D. W.
, and
Phillips
,
S. G.
,
1997
, “
Theory Versus Experiment for Leakage and Rotordynamic Coefficients of Circumferentially-Grooved Liquid Annular Seals With L/D of 0.45
,”
ASME
Paper No. FEDSM97-3333.10.1115/FEDSM97-3333
18.
Arghir
,
M.
, and
Frêne
,
J.
,
2004
, “
A Bulk-Flow Analysis of Static and Dynamic Characteristics of Eccentric Circumferentially-Grooved Liquid Annular Seals
,”
ASME J. Tribol.
,
126
(
2
), pp.
316
325
.10.1115/1.1611499
19.
Athavale
,
M. M.
,
Hendricks
,
R. C.
, and
Steinetz
,
B. M.
,
1995
, “
Numerical Simulation of Flow in a Whirling Annular Seal and Comparison With Experiments
,” NASA, Washington, DC, Report No.
NASA-TM-106961
.https://ntrs.nasa.gov/api/citations/19950024289/downloads/19950024289.pdf
20.
Yang
,
J.
, and
San Andrés
,
L.
,
2019
, “
On the Influence of the Entrance Section on the Rotordynamic Performance of a Pump Seal With Uniform Clearance: A Sharp Edge Versus a Round Inlet
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031029
.10.1115/1.4040742
21.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051104
.10.1115/1.4023653
22.
Li
,
F.
,
Zhai
,
L.
,
Cui
,
B.
,
Guo
,
J.
, and
Chen
,
G.
,
2021
, “
Investigation of the Dynamic Characteristics of an Eccentric Annular Seal on the Basis of a Transient CFD Method With Three Whirl Models
,”
J. Mar. Sci. Eng.
,
9
(
11
), p.
1290
.10.3390/jmse9111290
23.
Zhang
,
K.
,
Jiang
,
X.
,
Li
,
S.
,
Huang
,
B.
,
Yang
,
S.
,
Wu
,
P.
, and
Wu
,
D.
,
2020
, “
Transient CFD Simulation on Dynamic Characteristics of Annular Seal Under Large Eccentricities and Disturbances
,”
Energies
,
13
(
16
), p.
4056
.10.3390/en13164056
24.
Ikemoto
,
A.
,
Inoue
,
T.
,
Sakamoto
,
K.
, and
Uchiumi
,
M.
,
2018
, “
Nonlinear Analysis of Rotordynamic Fluid Forces in the Annular Plain Seal by Using Extended Perturbation Analysis of the Bulk-Flow Theory (Influence of Whirling Amplitude in the Case With Concentric Circular Whirl)
,”
ASME J. Tribol.
,
140
(
4
), p.
041708
.10.1115/1.4039370
25.
Yamada
,
K.
,
Ikemoto
,
A.
,
Inoue
,
T.
, and
Uchiumi
,
M.
,
2019
, “
Nonlinear Analysis of Rotordynamic Fluid Forces in the Annular Plain Seal by Using Extended Bulk-Flow Analysis: Influence of Static Eccentricity and Whirling Amplitude
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021017
.10.1115/1.4041128
26.
Xia
,
P.
,
Liu
,
Z.
,
Yu
,
X.
, and
Zhao
,
J.
,
2018
, “
A Transient Bulk Flow Model With Circular Whirl Motion for Rotordynamic Coefficients of Annular Seals
,”
Chin. J. Aeronaut.
,
31
(
5
), pp.
1085
1094
.10.1016/j.cja.2018.02.011
27.
ANSYS, Inc.
,
2021
, “
CFX 2021 R1 Documentation
,”
ANSYS
,
Canonsburg, PA
.
28.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
30.
Balasubramanian
,
R.
,
Barrows
,
S.
, and
Chen
,
J.
,
2008
, “
Investigation of Shear-Stress Transport Turbulence Model for Turbomachinery Applications
,”
AIAA
Paper No. 2008-566.10.2514/6.2008-566
31.
Cebeci
,
T.
,
2004
,
Turbulence Models and Their Application
,
Horizons Publishing
,
Long Beach, CA
.
32.
Marquette
,
O. R.
,
Childs
,
D. W.
, and
San Andres
,
L.
,
1997
, “
Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment
,”
ASME J. Tribol.
,
119
(
3
), pp.
443
447
.10.1115/1.2833515
33.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
34.
Pugachev
,
A. O.
,
Ravikovich
,
Y. A.
, and
Savin
,
L. A.
,
2015
, “
Flow Structure in a Short Chamber of a Labyrinth Seal With a Backward-Facing Step
,”
Comput. Fluids
,
114
, pp.
39
47
.10.1016/j.compfluid.2015.02.015
35.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery—Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
.10.1115/1.1808426
36.
Lomakin
,
A. A.
,
1958
, “
Calculation of the Critical Speed and the Conditions to Ensure Dynamic Stability of the Rotors in High Pressure Hydraulic Machines, Taking Account of the Forces in the Seals
,”
Energomashinostroenie
,
14
(
4)
, pp.
1
5
(in Russian).
37.
Storteig
,
E.
,
2000
, “
Dynamic Characteristics and Leakage Performance of Liquid Annular Seals in Centrifugal Pumps
,”
Ph.D. dissertation
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/a/125235_FULLTEXT01.pdf?sequence=1
38.
Young
,
W. C.
, and
Bundynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.