Abstract

Currently, most of the adjoint-based design systems documented in the open literature assume that the fluid behaves as an ideal gas, are restricted to the optimization of a single row of blades, or are not suited to impose geometric constraints. In response to these limitations, this paper presents a gradient-based shape optimization framework for the aerodynamic design of turbomachinery blades operating under nonideal thermodynamic conditions. The proposed design system supports the optimization of multiple blade rows, and it integrates a computer-aided design (CAD)-based parametrization with a Reynolds-averaged Navier–Stokes (RANS) flow solver and its discrete adjoint counterpart. The capabilities of the method were demonstrated by performing the design optimization of a single-stage axial turbine that employs isobutane (R600a) as working fluid. Notably, the aerodynamic optimization respected the minimum thickness constraint at the trailing edge of the stator and rotor blades and reduced the entropy generation within the turbine by 36%, relative to the baseline, which corresponds to a total-to-total isentropic efficiency increase of about 4 percentage points. The analysis of the flow field revealed that the performance improvement was achieved due to the reduction of the wake intensity downstream of the blades and the elimination of a shock-induced separation bubble at the suction side of the stator cascade.

References

1.
Van den Braembussche
,
R. A.
,
2008
, “
Numerical Optimization for Advanced Turbomachinery Design
,”
Optimization and Computational Fluid Dynamics
,
D.
Thévenin
and
G.
Janiga
, eds., Springer/Berlin, Germany, pp.
147
189
.
2.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
3.
Kluwick
,
A.
,
2017
, “
Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory
,”
J. Phys.: Conf. Ser.
,
821
, p.
012001
.10.1088/1742-6596/821/1/012001
4.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
5.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.10.1115/1.4023118
6.
Persico
,
G.
,
Rodriguez-Fernandez
,
P.
, and
Romei
,
A.
,
2019
, “
High-Fidelity Shape Optimization of Non-Conventional Turbomachinery by Surrogate Evolutionary Strategies
,”
ASME J. Turbomach.
,
141
(
8
), p.
081010
.10.1115/1.4043252
7.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.10.1115/1.4029616
8.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Performance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.10.1115/1.4046182
9.
Mounier
,
V.
,
Picard
,
C.
, and
Schiffmann
,
J.
,
2018
, “
Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121011
.10.1115/1.4040845
10.
Meroni
,
A.
,
Graa
,
J.
,
Persico
,
G.
, and
Haglind
,
F.
,
2018
, “
Optimization of Organic Rankine Cycle Power Systems Considering Multistage Axial Turbine Design
,”
Appl. Energy
,
209
, pp.
339
354
.10.1016/j.apenergy.2017.09.068
11.
Audet
,
C.
, and
Hare
,
W.
,
2017
,
Derivative-Free and Blackbox Optimization
, 1st ed.,
Springer
, Cham, Switzerland.
12.
Mueller
,
L.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2013
, “
Multidisciplinary Optimization of a Turbocharger Radial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021022
.10.1115/1.4007507
13.
De Servi
,
C. M.
,
Burigana
,
M.
,
Pini
,
M.
, and
Colonna
,
P.
,
2019
, “
Design Method and Performance Prediction for Radial-Inflow Turbines of High-Temperature Mini-Organic Rankine Cycle Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091021
.10.1115/1.4043973
14.
Oyama
,
A.
,
Liou
,
M.-S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.10.2514/1.2290
15.
Samad
,
A.
,
Kim
,
K.-Y.
,
Goel
,
T.
,
Haftka
,
R. T.
, and
Shyy
,
W.
,
2008
, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp.
301
310
.10.2514/1.28999
16.
Verstraete
,
T.
,
2019
, “
Toward Gradient-Based Optimization of Full Gas Turbines
,”
ASME Mech. Eng.
,
141
(
3
), pp.
54
55
.10.1115/1.2019-MAR-7
17.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
, New York.
18.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3/4
), pp.
393
415
.10.1023/A:1011430410075
19.
Peter
,
J. E. V.
, and
Dwight
,
R. P.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.10.1016/j.compfluid.2009.09.013
20.
Pironneau
,
O.
,
1974
, “
On Optimum Design in Fluid Mechanics
,”
J. Fluid Mech.
,
64
(
1
), pp.
97
110
.10.1017/S0022112074002023
21.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.10.1007/BF01061285
22.
Jameson
,
A.
,
1995
, “
Optimum Aerodynamic Design Using CFD and Control Theory
,”
AIAA
Paper No. 95-1729.10.2514/6.95-1729
23.
Reuther
,
J.
,
Jameson
,
A.
,
Farmer
,
J.
,
Martinelli
,
L.
, and
Saunders
,
D.
,
1996
, “
Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation
,”
AIAA
Paper No. 96-0094.10.2514/6.96-0094
24.
Yang
,
S.
,
Wu
,
H.-Y.
,
Liu
,
F.
, and
Tsai
,
H.-M.
,
2003
, “
Optimum Aerodynamic Design of Cascades by Using an Adjoint Equation Method
,”
AIAA
Paper No. 2003-1068.10.2514/6.2003-1068
25.
Wu
,
H.-Y.
,
Yang
,
S.
,
Liu
,
F.
, and
Tsai
,
H.-M.
,
2003
, “
Comparisons of Three Geometric Representations of Airfoils for Aerodynamic Optimization
,”
AIAA
Paper No. 2003-4095.10.2514/6.2003-4095
26.
Wu
,
H.-Y.
,
Liu
,
F.
, and
Tsai
,
H.-M.
,
2005
, “
Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method
,”
AIAA
Paper No. 2005-1006.10.2514/6.2005-1006
27.
Arens
,
K.
,
Rentrop
,
P.
,
Stoll
,
S.
, and
Wever
,
U.
,
2005
, “
An Adjoint Approach to Otimal Design of Turbine Blades
,”
Appl. Numer. Math.
,
53
(
2–4
), pp.
93
105
.10.1016/j.apnum.2004.11.003
28.
Li
,
Y.
,
Yang
,
D.
, and
Feng
,
Z.
,
2006
, “
Inverse Problem in Aerodynamic Shape Design of Turbomachinery Blades
,”
ASME
Paper No. GT2006-91135.10.1115/GT2006-91135
29.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2006
, “
Compressor Blade Optimization Using a Continuous Adjoint Formulation
,”
ASME
Paper No. GT2006-90466.10.1115/GT2006-90466
30.
Duta
,
M. C.
,
Shahpar
,
S.
, and
Giles
,
M. B.
,
2007
, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,”
ASME
Paper No. GT2007-28329.10.1115/GT2007-28329
31.
Corral
,
R.
, and
Gisbert
,
F.
,
2008
, “
Profiled End Wall Design Using an Adjoint Navier–Stokes Solver
,”
ASME J. Turbomach.
,
130
(
2
), p.
021011
.10.1115/1.2751143
32.
Wang
,
D. X.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p.
021011
.10.1115/1.3072498
33.
Wang
,
D. X.
,
He
,
L.
,
Li
,
Y. S.
, and
Wells
,
R. G.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
,
132
(
2
), p.
021012
.10.1115/1.3103928
34.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011026
.10.1115/1.4001166
35.
Walther
,
B.
, and
Nadarajah
,
S.
,
2013
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single-Stage Transonic Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021017
.10.1115/1.4007502
36.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2014
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.10.1115/1.4025164
37.
Walther
,
B.
, and
Nadarajah
,
S.
,
2014
, “
An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations
,”
ASME
Paper No. GT2014-26604.10.1115/GT2014-26604
38.
Pini
,
M.
,
Persico
,
G.
,
Pasquale
,
D.
, and
Rebay
,
S.
,
2015
, “
Adjoint Method for Shape Optimization in Real-Gas Flow Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032604
.10.1115/1.4028495
39.
Xu
,
S.
,
Radford
,
D.
,
Meyer
,
M.
, and
Müller
,
J.-D.
,
2015
, “
CAD-Based Adjoint Shape Optimisation of a One-Stage Turbine With Geometric Constraints
,”
ASME
Paper No. GT2015-42237.10.1115/GT2015-42237
40.
Montanelli
,
H.
,
Montagnac
,
M.
, and
Gallard
,
F.
,
2015
, “
Gradient Span Analysis Method: Application to the Multipoint Aerodynamic Shape Optimization of a Turbine Cascade
,”
ASME J. Turbomach.
,
137
(
9
), p.
091006
.10.1115/1.4030016
41.
Luo
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2015
, “
Turbine Blade Row Optimization Through Endwall Contouring by an Adjoint Method
,”
J. Propul. Power
,
31
(
2
), pp.
505
518
.10.2514/1.B35152
42.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines
,”
J. Propul. Power
,
31
(
5
), pp.
1298
1319
.10.2514/1.B35433
43.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids
,”
ASME J. Turbomach.
,
137
(
8
), p.
081006
.10.1115/1.4029550
44.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
An Adjoint-Based Multi-Point Optimization Method for Robust Turbomachinery Design
,”
ASME
Paper No. GT2015-4414210.1115/GT2015-44142.
45.
Tang
,
X.
,
Luo
,
J.
, and
Liu
,
F.
,
2018
, “
Adjoint Aerodynamic Optimization of a Transonic Fan Rotor Blade With a Localized Two-Level Mesh Deformation Method
,”
Aerosp. Sci. Technol.
,
72
, pp.
267
277
.10.1016/j.ast.2017.11.015
46.
Mueller
,
L.
, and
Verstraete
,
T.
,
2017
, “
CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine
,”
Int. J. Turbomach., Propul. Power
,
2
(
3
), p.
14
.10.3390/ijtpp2030014
47.
Vitale
,
S.
,
Albring
,
T. A.
,
Pini
,
M.
,
Gauger
,
N. R.
, and
Colonna
,
P.
,
2017
, “
Fully Turbulent Discrete Adjoint Solver for Non-Ideal Compressible Flow Applications
,”
J. Global Power Propul. Soc.
,
1
, pp.
252
270
.10.22261/JGPPS.Z1FVOI
48.
Luers
,
M.
,
Sagebaum
,
M.
,
Mann
,
S.
,
Backhaus
,
J.
,
Grossmann
,
D.
, and
Gauger
,
N. R.
,
2018
, “
Adjoint-Based Volumetric Shape Optimization of Turbine Blades
,”
AIAA
Paper No. 2018-3638.10.2514/6.2018-3638
49.
Anand
,
N.
,
Vitale
,
S.
,
Pini
,
M.
, and
Colonna
,
P.
,
2018
, “
Assessment of FFD and CAD-Based Shape Parametrization Methods for Adjoint-Based Turbomachinery Shape Optimization
,”
Proceedings of the Montreal 2018 Global Power and Propulsion Forum
, Montreal, QC, Canada, May 7–9, pp.
1
8
.https://www.researchgate.net/publication/325070829_Assessment_of_FFD_and_CADbased_shape_parametrization_methods_for_adjoint-based_turbomachinery_shape_optimization
50.
Mykhaskiv
,
O.
,
Banović
,
M.
,
Auriemma
,
S.
,
Mohanamuraly
,
P.
,
Walther
,
A.
,
Legrand
,
H.
, and
Müller
,
J.-D.
,
2018
, “
NURBS-Based and Parametric-Based Shape Optimization With Differentiated CAD Kernel
,”
Comput.-Aided Des. Appl.
,
15
(
6
), pp.
916
926
.10.1080/16864360.2018.1462881
51.
Sanchez Torreguitart
,
I.
,
Verstraete
,
T.
, and
Mueller
,
L.
,
2018
, “
Optimization of the LS89 Axial Turbine Profile Using a CAD and Adjoint Based Approach
,”
Int. J. Turbomach., Propul. Power
,
3
(
3
), p.
20
.10.3390/ijtpp3030020
52.
Sanchez Torreguitart
,
I.
,
Verstraete
,
T.
, and
Mueller
,
L.
,
2019
, “
CAD and Adjoint Based Multipoint Optimization of an Axial Turbine Profile
,”
Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems
,
E.
Andrés-Pérez
,
L. M.
González
,
J.
Periaux
,
N.
Gauger
,
D.
Quagliarella
, and
K.
Giannakoglou
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
35
46
.
53.
Russo
,
V.
,
Orsenigo
,
S.
,
Mueller
,
L.
,
Verstraete
,
T.
, and
Lavagnoli
,
S.
,
2019
, “
Adjoint Based Aerodynamic Optimization of a Multi-Splitter Turbine Vane Frame
,”
ASME
Paper No. GT2019-91608.10.1115/GT2019-91608
54.
Rubino
,
A.
,
Vitale
,
S.
,
Colonna
,
P.
, and
Pini
,
M.
,
2020
, “
Fully-Turbulent Adjoint Method for the Unsteady Shape Optimization of Multi-Row Turbomachinery
,”
Aerosp. Sci. Technol.
,
106
, p.
106132
.10.1016/j.ast.2020.106132
55.
Vitale
,
S.
,
Pini
,
M.
, and
Colonna
,
P.
,
2020
, “
Multistage Turbomachinery Design Using the Discrete Adjoint Method Within the Open-Source Software SU2
,”
J. Propul. Power
,
36
(
3
), pp.
465
478
.10.2514/1.B37685
56.
Samareh
,
J. A.
,
2001
, “
Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization
,”
AIAA J.
,
39
(
5
), pp.
877
884
.10.2514/2.1391
57.
Becker
,
G.
,
Schäfer
,
M.
, and
Jameson
,
A.
,
2011
, “
An Advanced NURBS Fitting Procedure for Post-Processing of Grid-Based Shape Optimizations
,”
AIAA
Paper No. 2011-891.10.2514/6.2011-891
58.
Agromayor
,
R.
,
Anand
,
N.
,
Müller
,
J.-D.
,
Pini
,
M.
, and
Nord
,
L. O.
,
2021
, “
A Unified Geometry Parametrization Method for Turbomachinery Blades
,”
Comput.-Aided Des.
,
133
, p.
102987
.10.1016/j.cad.2020.102987
59.
Banović
,
M.
,
Mykhaskiv
,
O.
,
Auriemma
,
S.
,
Walther
,
A.
,
Legrand
,
H.
, and
Müller
,
J.-D.
,
2018
, “
Algorithmic Differentiation of the Open CASCADE Technology CAD Kernel and Its Coupling With an Adjoint CFD Solver
,”
Optim. Methods Software
,
33
(
4–6
), pp.
813
828
.10.1080/10556788.2018.1431235
60.
Pardiñas
,
Á. Á.
,
Pilarczyk
,
M.
,
Agromayor
,
R.
, and
Nord
,
L. O.
,
2019
, “
Design of an Experimental ORC Expander Setup Using Natural Working Fluids
,”
Proceedings of the Fifth International Seminar on ORC Power Systems
, Athens, Greece, Sept. 9–11, pp.
1
8
.https://www.orc2019.com/online/proceedings/documents/43.pdf
61.
Various authors,
2020
, “
Parablade v1.0
,”.
62.
Piegl
,
L.
, and
Tiller
,
W.
,
2012
,
The NURBS Book
, 2nd ed.,
Springer Science & Business Media
, Berlin, Germany.
63.
Korakianitis
,
T.
, and
Papagiannidis
,
P.
,
1993
, “
Surface-Curvature-Distribution Effects on Turbine-Cascade Performance
,”
ASME J. Turbomach.
,
115
(
2
), pp.
334
341
.10.1115/1.2929239
64.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
65.
Various authors,
2020
, “
Gmsh v4.6
”.
66.
Dwight
,
R. P.
,
2009
, “
Robust Mesh Deformation Using the Linear Elasticity Equations
,” Proceedings of the Fourth International Conference on Computational Fluid Dynamics (
ICCFD 2006
)
, Ghent, Belgium, pp.
401
406
.10.1007/978-3-540-92779-2_62
67.
Alfonsi
,
G.
,
2009
, “
Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling
,”
ASME Appl. Mech. Rev.
,
62
(
4
), p.
040802
.10.1115/1.3124648
68.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
69.
Vitale
,
S.
,
Gori
,
G.
,
Pini
,
M.
,
Guardone
,
A.
,
Economon
,
T. D.
,
Palacios
,
F.
,
Alonso
,
J. J.
, and
Colonna
,
P.
,
2015
, “
Extension of the SU2 Open Source CFD Code to the Simulation of Turbulent Flows of Fluids Modelled With Complex Thermophysical Laws
,”
AIAA
Paper No. 2015-2760.10.2514/6.2015-2760
70.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
, Singapore.
71.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
72.
Barth
,
T.
,
1991
, “
Numerical Aspects of Computing High Reynolds Number Flows on Unstructured Meshes
,”
AIAA
Paper No. 91-721.10.2514/6.91-721
73.
Palacios
,
F.
,
Alonso
,
J.
,
Duraisamy
,
K.
,
Colonno
,
M.
,
Hicken
,
J.
,
Aranake
,
A.
,
Campos
,
A.
,
2013
, “
Stanford University Unstructured (SU2): An Open-Source Integrated Computational Environment for Multi-Physics Simulation and Design
,”
AIAA
Paper No. 2013-0287.10.2514/6.2013-0287
74.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
SU2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.10.2514/1.J053813
75.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
76.
Vinokur
,
M.
, and
Montagné
,
J.-L.
,
1990
, “
Generalized Flux-Vector Splitting and Roe Average for an Equilibrium Real Gas
,”
J. Comput. Phys.
,
89
(
2
), pp.
276
300
.10.1016/0021-9991(90)90145-Q
77.
Harten
,
A.
, and
Hyman
,
J. M.
,
1983
, “
Self-Adjusting Grid Methods for One-Dimensional Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
50
(
2
), pp.
235
269
.10.1016/0021-9991(83)90066-9
78.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
79.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts
,
W. W.
,
1997
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Upwind High-Resolution Schemes
, Springer/Berlin, Germany, pp.
95
103
.10.1007/978-3-642-60543-7
80.
Kemm
,
F.
,
2011
, “
A Comparative Study of TVD-Limiters—Well-Known Limiters and an Introduction of New Ones
,”
Int. J. Numer. Methods Fluids
,
67
(
4
), pp.
404
440
.10.1002/fld.2357
81.
Weiss
,
J.
,
Maruszewski
,
J.
, and
Smith
,
W.
,
1997
, “
Implicit Solution of the Navier-Stokes Equations on Unstructured Meshes
,”
AIAA
Paper No. 97-2103.10.2514/6.97-2103
82.
Mavriplis
,
D.
,
2003
, “
Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 2003-3986.10.2514/6.2003-3986
83.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
84.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
85.
Giles
,
M. B.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,” Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Technical Report No. GTL 205.
86.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1993
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
.10.2514/3.23618
87.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
(
3
), pp.
347
357
.10.1115/1.2929421
88.
Albring
,
T. A.
,
Sagebaum
,
M.
, and
Gauger
,
N. R.
,
2016
, “
Efficient Aerodynamic Design Using the Discrete Adjoint Method in SU2
,”
AIAA
Paper No. 2016-3518.10.2514/6.2016-3518
89.
Sagebaum
,
M.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2018
, “
Expression Templates for Primal Value Taping in the Reverse Mode of Algorithmic Differentiation
,”
Optim. Methods Software
,
33
(
4–6
), pp.
1207
1231
.10.1080/10556788.2018.1471140
90.
Sagebaum
,
M.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2019
, “
High-Performance Derivative Computations Using CoDiPack
,”
ACM Trans. Math. Software
,
45
(
4
), pp.
1
26
.10.1145/3356900
91.
Lyness
,
J. N.
, and
Moler
,
C. B.
,
1967
, “
Numerical Differentiation of Analytic Functions
,”
SIAM J. Numer. Anal.
,
4
(
2
), pp.
202
210
.10.1137/0704019
92.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.10.1137/S003614459631241X
93.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software (TOMS)
,
29
(
3
), pp.
245
262
.10.1145/838250.838251
94.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,” German Test and Research Institute for Aviation and Space Flight, Oberpfaffenhofen, Germany, Technical Report No. DFVLR-FB 88–28.
95.
Various authors,
2020
, “
Scipy v1.5
”.
96.
Kiock
,
R.
,
Lehthaus
,
F.
,
Baines
,
N. C.
, and
Sieverding
,
C. H.
,
1986
, “
The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind Tunnels
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
277
284
.10.1115/1.3239900
97.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition
,”
ASME J. Turbomach.
,
109
(
2
), pp.
177
185
.10.1115/1.3262083
98.
Arts
,
T.
, and
Lambert de Rouvroit
,
M.
,
1992
, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.10.1115/1.2927978
99.
Agromayor
,
R.
, and
Nord
,
L. O.
,
2019
, “
Preliminary Design and Optimization of Axial Turbines Accounting for Diffuser Performance
,”
Int. J. Turbomach., Propul. Power
,
4
(
3
), p.
32
.10.3390/ijtpp4030032
100.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.10.1115/1.3227240
101.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2009
,
Gas Turbine Theory
, 6th ed.,
Pearson Education
, Harlow, UK.
102.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
103.
Bücker
,
D.
, and
Wagner
,
W.
,
2006
, “
Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane
,”
J. Phys. Chem. Ref. Data
,
35
(
2
), pp.
929
1019
.10.1063/1.1901687
104.
Vogel
,
E.
,
Küchenmeister
,
C.
, and
Bich
,
E.
,
2000
, “
Viscosity Correlation for Isobutane Over Wide Ranges of the Fluid Region
,”
Int. J. Thermophys.
,
21
(
2
), pp.
343
356
.10.1023/A:1006623310780
105.
Perkins
,
R. A.
,
2002
, “
Measurement and Correlation of the Thermal Conductivity of Isobutane From 114 K to 600 K at Pressures to 70 MPa
,”
J. Chem. Eng. Data
,
47
(
5
), pp.
1272
1279
.10.1021/je010121u
106.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.