Abstract

In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low-carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three-dimensional, compressible, and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts the main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed by 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.

References

1.
Ciccarelli
,
G.
,
Ginsburg
,
T.
,
Boccio
,
J.
,
Economos
,
C.
,
Finfrock
,
C.
,
Gerlach
,
L.
,
Sato
,
K.
, and
Kinoshita
,
M.
,
1994
, “
High-Temperature Hydrogen-Air-Steam Detonation Experiments in the BNL Small-Scale Development Apparatus
,” Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6213; BNL-NUREG-52414
.10.2172/10183831
2.
Breitung
,
W.
,
Dorofeev
,
S.
,
Kotchourko
,
A.
,
Redlinger
,
R.
,
Scholtyssek
,
W.
,
Bentaib
,
A.
,
L'Heriteau
,
J.-P.
,
2005
, “
Integral Large Scale Experiments on Hydrogen Combustion for Severe Accident Code Validation-HYCOM
,”
Nucl. Eng. Des.
,
235
(
2–4
), pp.
253
270
.10.1016/j.nucengdes.2004.08.063
3.
Chao
,
J.
, and
Lee
,
J.
,
2003
, “
The Propagation Mechanism of High Speed Turbulent Deflagrations
,”
Shock Waves
,
12
(
4
), pp.
277
289
.10.1007/s00193-002-0161-2
4.
Gamezo
,
V.
,
Ogawa
,
T.
, and
Oran
,
E.
,
2008
, “
Flame Acceleration and DDT in Channels With Obstacles: Effect of Obstacle Spacing
,”
Combust. Flame
,
155
(
1–2
), pp.
302
315
.10.1016/j.combustflame.2008.06.004
5.
Ugarte
,
O.
,
Bychkov
,
V.
,
Sadek
,
J.
,
Valiev
,
D.
, and
Akkerman
,
V.
,
2016
, “
Critical Role of Blockage Ratio for Flame Acceleration in Channels With Tightly Spaced Obstacles
,”
Phys. Fluids
,
28
(
9
), p.
093602
.10.1063/1.4961648
6.
Xiao
,
H.
, and
Oran
,
E.
,
2020
, “
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Air Mix-Ture in a Channel With an Array of Obstacles of Different Shapes
,”
Combust. Flame
,
220
, pp.
378
393
.10.1016/j.combustflame.2020.07.013
7.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
8.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion Part 1: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
9.
Legier
,
J.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame Les Model for Premixed and Nonpremixed Turbulent Combustion
,”
Proceedings of the Summer Program
,
Center for Turbulence Research Stanford
,
CA
, Vol.
12
, pp.
157
168
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.4458&rep=rep1&type=pdf
10.
Volpiani
,
P.
,
Schmitt
,
T.
,
Vermorel
,
O.
,
Quillatre
,
P.
, and
Veynante
,
D.
,
2017
, “
Large Eddy Simulation of Explosion Deflagrating Flames Using a Dynamic Wrinkling Formulation
,”
Combust. Flame
,
186
, pp.
17
31
.10.1016/j.combustflame.2017.07.022
11.
Masri
,
A.
,
AlHarbi
,
A.
,
Meares
,
S.
, and
Ibrahim
,
S.
,
2012
, “
A Comparative Study of Turbulent Premixed Flames Propagating Past Repeated Obstacles
,”
Ind. Eng. Chem. Res.
,
51
(
22
), pp.
7690
7703
.10.1021/ie201928g
12.
Genin
,
F.
, and
Menon
,
S.
,
2010
, “
Studies of Shock/Turbulent Shear Layer Interaction Using Large-Eddy Simulation
,”
Comput. Fluids
,
39
(
5
), pp.
800
819
.10.1016/j.compfluid.2009.12.008
13.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray– Turbulence–Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
(
1–2
), pp.
228
257
.10.1016/j.combustflame.2007.09.011
14.
Genin
,
F.
, and
Menon
,
S.
,
2010
, “
Simulation of Turbulent Mixing Behind a Strut Injector
,”
AAIA J.
,
48
(
3
), pp.
526
539
.10.2514/1.43647
15.
Sankaran
,
R.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Structure of a Spatially Developing Turbulent Lean Methane-Air Bunsen Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1291
1298
.10.1016/j.proci.2006.08.025
16.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2014
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.1.2, accessed Sept. 15, 2021, http://www.cantera.org
17.
Poinsot
,
T. J.
, and
Lelef
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
18.
Jiang
,
X.
, and
Luo
,
K.
,
2000
, “
Direct Numerical Simulation of the Puffing Phenomenon of an Axisymmetric Thermal Plume
,”
Theor. Comput. Fluid Dyn.
,
14
(
1
), pp.
55
74
.10.1007/s001620050125
You do not currently have access to this content.