Abstract

The rectangular vortex generator pairs (RVGPs) are arranged upstream of the film cooling holes to achieve better coolant coverage on the endwall near the pressure-side corner area. The endwall film cooling effectiveness distributions under transonic flow conditions are numerically calculated for the single RVGP and double rows of RVGPs cases. At first, the effects of three geometrical parameters (i.e., the distance between RVGP and cooling hole, height of RVGP and attack angle of RVGP) on endwall film cooling effectiveness are studied with a single hole and RVGP at different mainstream inlet Reynolds numbers and blowing ratios. Then, the double rows of RVGPs are applied to further enhance the overall film cooling effectiveness on the blade endwall. The results show that the implementation of RVGPs significantly enhances the film cooling effect on transonic blade endwall at a pressure-side corner area. With the increase of RVGP height, the lateral coolant coverage on the endwall corner area is improved. However, by decreasing the distance between the vortex generator pair and cooling hole, the film cooling effectiveness downstream of the cooling holes is increased. The attack angle of RVGP mainly affects the shape of coolant spreading on endwall surface. The RVGP with optimum dimensions and arrangement is able to suppress the coolant from lifting off the endwall and increase the coolant diffusion near the endwall. Compared with no vortex generator case, the area-averaged film cooling effectiveness on endwall with double rows of RVGPs is improved by 13.16%.

References

1.
Eckert
,
E. R. G.
,
1984
, “
Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
206
213
.10.1115/1.3239536
2.
Bogard
,
D.
, and
Thole
,
K.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Simon
,
T. W.
, and
Piggush
,
J.
,
2008
, “
Hot Gas Path Heat Transfer Characteristics/Active Cooling of Turbine Components
,”
Thermal Engineering in Power Systems
,
R. S.
Amano
, and
B.
Sunden
, eds.,
WIT Press
, Southampton, UK.
4.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
, Taylor & Francis, New York.
5.
Jabbari
,
M.
,
Marston
,
K.
,
Eckert
,
E.
, and
Goldstein
,
R.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
.10.1115/1.2836637
6.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.10.1115/1.2840916
7.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
J. Turbomach.
,
119
(
4
), pp.
786
793
.10.1115/1.2841189
8.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
.10.1115/1.2836731
9.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
, pp.
507
514
.10.1016/j.applthermaleng.2015.07.082
10.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
.10.1016/j.ijheatmasstransfer.2016.06.047
11.
Shiau
,
C.-C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.10.1115/1.4042057
12.
Okita
,
Y.
, and
Nakamata
,
C.
,
2008
, “
Computational Predictions of Endwall Film Cooling for a Turbine Nozzle Vane With an Asymmetric Contoured Passage
,”
ASME
Paper No. GT2008-50878.10.1115/GT2008-50878
13.
Chen
,
P.
,
Gao
,
H.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
Effects of Endwall 3D Contouring on Film Cooling Effectiveness of Cylindrical Hole Injections at Different Locations on Vane Endwall
,”
ASME
Paper No. GT201876844.10.1115/GT201876844
14.
Lynch
,
S.
,
Thole
,
K.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Filmcooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.10.1115/1.4002951
15.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Ole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
16.
Bunker
,
R.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
17.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.10.1115/1.2841752
18.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.10.1016/S0142-727X(99)00076-4
19.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.10.1115/1.2019315
20.
Colban
,
W.
,
Thole
,
K.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.10.1115/1.2720493
21.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.10.1615/HeatTransRes.v41.i6.40
22.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
ASME J. Eng. Power
,
90
(
4
), pp.
384
393
.10.1115/1.3609223
23.
Haven
,
B.
,
Yamagata
,
D.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-045
.10.1115/1997-GT-045
24.
Heidmann
,
J.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.10.1115/1.2777194
25.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.10.1115/1.2950059
26.
Hunley
,
B.
,
Nix
,
A.
, and
Heidmann
,
J.
, “
A Preliminary Numerical Study on the Effect of High Freestream Turbulence on Anti-Vortex Film Cooling Design at High Blowing Ratio
,”
ASME
Paper No. GT2010-22077.10.1115/GT2010-22077
27.
Rigby
,
D.
, and
Heidmann
,
J.
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
Paper No. GT2008-51361.10.1115/GT2008-51361
28.
Zhou
,
W.
, and
Hu
,
H.
,
2016
, “
Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps
,”
Int. J. Heat Mass Transfer
,
103
, pp.
443
456
.10.1016/j.ijheatmasstransfer.2016.07.066
29.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Duneinspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
110
, pp.
908
920
.10.1016/j.ijheatmasstransfer.2017.03.091
30.
Sarkar
,
S.
, and
Ranakoti
,
G.
,
2017
, “
Effect of Vortex Generators on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
139
(
6
), p.
061009
.10.1115/1.4035275
31.
Jindal
,
P.
,
Agarwal
,
S.
,
Sharma
,
R.
, and
Roy
,
A.
,
2018
, “
Enhancement of Film Cooling Effectiveness Using Rectangular Winglet Pair
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041014
.10.1115/1.4039700
32.
He
,
K.
,
Li
,
J.
, and
Yan
,
X.
,
2018
, “
Numerical Investigations Into Heat Transfer and Film Cooling Effect on a Transonic Blade Endwall
,”
Appl. Therm. Eng.
,
129
, pp.
934
952
.10.1016/j.applthermaleng.2017.10.109
33.
Li
,
J.
,
He
,
K.
, and
Yan
,
X.
,
2020
, “
Effect of Non-Axisymmetric Endwall Profiling on Heat Transfer and Film Cooling Effectiveness of a Transonic Rotor Blade
,”
ASME J. Turbomach.
,
142
(
5
), p.
051006
.10.1115/1.4046448
34.
Wang
,
N.
,
Shiau
,
C.
,
Han
,
J.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling From Midchord or Downstream Rows and Upstream Coolant Injection
,”
Int. J. Heat Mass Transfer
,
133
, pp.
247
255
.10.1016/j.ijheatmasstransfer.2018.12.079
35.
Giel
,
P.
,
Thurman
,
D.
,
Lopez
,
I.
,
Boyle
,
R.
,
Van Fossen
,
G.
,
Jett
,
T.
,
Camperchioli
,
W.
, and
La
,
H.
, “
Threedimensional Flow Field Measurements in a Transonic Turbine Cascade
,”
ASME
Paper No. 96-GT-113
.10.1115/1996-GT-113
36.
Giel
,
P.
,
Thurman
,
D.
,
Van Fossen
,
G.
,
Hippensteele
,
S.
, and
Boyle
,
R.
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME
Paper No. 96-GT-180
.10.1115/96-GT-180
37.
Giel
,
P.
,
Van Fossen
,
G.
,
Boyle
,
R.
,
Thurman
,
D.
, and
Civinskas
,
K.
, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,”
ASME
Paper No. 99-GT-125
.10.1115/1999-GT-125
38.
Goldstein
,
R.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.10.1016/S0065-2717(08)70020-0
39.
Gregory-Smith
,
D.
,
Graves
,
C.
, and
Walsh
,
J.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.10.1115/1.3262163
40.
Lampart
,
P.
,
2009
, “
Investigation of Endwall Flows and Losses in Axial Turbines: Part 1—Formation of Endwall Flows and Losses
,”
J. Theoret. Appl. Mech.
,
47
(
2
), pp.
321
342
. http://ptmts.org.pl/jtam/index.php/jtam/article/view/v47n2p321
41.
Liu
,
J.
,
Lin
,
X.
,
Zhang
,
X.
, and
An
,
B.
,
2016
, “
Investigation on Cooling Effectiveness and Aerodynamic Loss of a Turbine Cascade With Film Cooling
,”
J. Therm. Sci.
,
25
(
1
), pp.
50
59
.10.1007/s11630-016-0833-3
42.
Levchenya
,
A.
, and
Smirnov
,
E.
,
2007
, “
CFD-Analysis of 3D Flow Structure and Endwall Heat Transfer in a Transonic Turbine Blade Cascade: Effects of Grid Refinement
,”
West-East High Speed Flow Field Conference
, Moscow, Russia, Nov. 19–22, pp.
1
12
. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.499.7901
43.
Wang
,
C.
,
Wang
,
Z.
,
Wang
,
L.
,
Luo
,
L.
, and
Sunden
,
B.
,
2019
, “
Experimental Study of Fluid Flow and Heat Transfer of Jet Impingement in Cross-Flow With a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
135
, pp.
935
949
.10.1016/j.ijheatmasstransfer.2019.02.024
You do not currently have access to this content.