Abstract

This paper describes an experimental investigation of the reverse flow slinger (RFS) combustor that has been developed in order to attain high flame stability and low emissions in gas turbine (GT) engines. The combustor employs centrifugal fuel injection through a rotary atomizer and performs flame stabilization at the stagnation zone generated by reverse flow configuration. The design facilitates entrainment of hot product gases and internal preheating of inlet air, which enhances flame stability and permits stable lean operation for low NOx. Moreover, a rotary atomizer eliminates the need for high injection pressures, resulting in a compact and lightweight design. Atmospheric pressure combustion was performed with liquid fuels, Jet A-1 and methanol, at ultralean fuel–air ratios (FARs) with thermal intensity varying from 30 to 52 MW/m3 atm. Combustor performance was evaluated by analyzing the lean blowout, emissions, and combustion efficiency. A very low lean blowout corresponding to global equivalence ratio of 0.1 was observed, which showed the combustor's high flame stability. Sustained and stable combustion at low heat release was attained, and NOx emissions as low as 0.4 g/kg and 0.1 g/kg were achieved with Jet A-1 and methanol, respectively. Combustion efficiency of around 55% and 90% was obtained in operation with Jet A-1 and methanol. The overall combustor performance was significantly better with methanol in terms of emissions and efficiency.

References

1.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1991
, “
Low NOx Rich-Lean Combustion Concept Application
,”
AIAA
Paper No. 91-1962.10.2514/6.1991-1962
2.
Bahr
,
D. W.
,
1987
, “
Technology for the Design of High Temperature Rise Combustors
,”
J. Propul. Power
,
3
(
2
), pp.
179
186
.10.2514/3.22971
3.
Mongia
,
H. C.
,
2003
, “
TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions
,”
AIAA
Paper No. 2003-2657.10.2514/6.2003-2657
4.
Joshi
,
N. D.
,
Mongia
,
H. C.
,
Leonard
,
G.
,
Stegmaier
,
J. W.
, and
Vickers
,
E. C.
,
1998
, “
Dry Low Emissions Combustor Development
,”
ASME
Paper No. 98-GT-310.10.1115/98-GT-310
5.
Anderson
,
D.
,
1975
, “
Effects of Equivalence Ratio and Dwell Time on Exhaust Emissions From an Experimental Premixing Prevaporizing Burner
,”
ASME
Paper No. 75-GT-69.10.1115/75-GT-69
6.
Tacina
,
R.
,
Wey
,
C.
, and
Laing
,
P.
,
2001
, “
A Low NOx Lean-Direct Injection, Multipoint Integrated Module Combustor Concept for Advanced Aircraft Gas Turbines
,”
Conference on Technologies and Combustion for a Clean Environment
, Oporto, Portugal, July 9–12, Report No.
NASA/TM–2002–2111347
. https://ntrs.nasa.gov/citations/20020061947
7.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.10.1016/S0360-1285(97)00006-3
8.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
9.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
10.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
11.
Gupta
,
A.
, and
Hasegawa
,
T.
,
1999
, “
The Effect of Air Preheat Temperature and Oxygen Concentration in Air on the Structure of Propane Air Diffusion Flames
,”
AIAA
Paper No. 99-725.10.2514/6.1999-725
12.
Kalb
,
J. R.
, and
Sattelmayer
,
T.
,
2004
, “
Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm NOx Burner With Periodic Flue Gas Recirculation
,”
ASME
Paper No. GT2004-53410.10.1115/GT2004-53410
13.
Neumeier
,
Y.
,
Weksler
,
Y.
,
Zinn
,
B.
,
Seitzman
,
J.
,
Jagoda
,
J.
, and
Kenny
,
J.
,
2005
, “
Ultra Low Emissions Combustor With Non-Premixed Reactants Injection
,”
AIAA
Paper No. 2005-3775.10.2514/6.2005-3775
14.
Crane
,
J.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B. T.
,
2006
, “
Stagnation-Point Reverse-Flow Combustor Performance With Liquid Fuel Injection
,”
ASME
Paper No. GT2006-91338.10.1115/GT2006-91338
15.
Lefebvre
,
A. H.
,
1985
, “
Fuel Effects on Gas Turbine Combustion—Ignition, Stability, and Combustion Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
24
37
.10.1115/1.3239693
16.
Rink
,
K. K.
, and
Lefebvre
,
A. H.
,
1986
, “
Influence of Fuel Drop Size and Combustor Operating Conditions on Pollutant Emissions
,”
SAE
Paper No. 861541.10.4271/861541
17.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
, 2nd ed.,
CRC Press
, Boca Raton, FL.
18.
Maskey
,
H. C.
, and
Marsh
,
F. X.
,
1962
, “
The Annular Combustion Chamber With Centrifugal Fuel Injection
,”
SAE
Paper No. 620007.10.4271/620007
19.
Morishita
,
T.
,
1981
, “
A Development of the Fuel Atomizing Device Utilizing High Rotational Speed
,”
ASME
Paper No. 81-GT-180.10.1115/81-GT-180
20.
Dahm
,
W. J. A.
,
Patel
,
P. R.
, and
Lerg
,
B. H.
,
2006
, “
Experimental Visualizations of Liquid Breakup Regimes in Fuel Slinger Atomization
,”
Atomization Sprays
,
16
(
8
), pp.
933
944
.10.1615/AtomizSpr.v16.i8.50
21.
Dahm
,
W. J. A.
,
Patel
,
P. R.
, and
Lerg
,
B. H.
,
2002
, “
Visualization and Fundamental Analysis of Liquid Atomization by Fuel Slingers in Small Gas Turbine Engines
,”
AIAA
Paper No. 2002-3183.10.2514/6.2002-3183
22.
Dahm
,
W. J. A.
,
Patel
,
P. R.
, and
Lerg
,
B. H.
,
2006
, “
Analysis of Liquid Breakup Regimes in Fuel Slinger Atomization
,”
Atomization Sprays
,
16
(
8
), pp.
945
962
.10.1615/AtomizSpr.v16.i8.60
23.
Choi
,
S. M.
,
Jang
,
S. H.
,
Lee
,
D. H.
, and
You
,
G. W.
,
2010
, “
Spray Characteristics of the Rotating Fuel Injection System of a Micro-Jet Engine
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
551
558
.10.1007/s12206-009-1206-6
24.
Choi
,
S. M.
, and
Jang
,
S. H.
,
2010
, “
Spray Behavior of the Rotary Atomizer With In-Line Injection Orifices
,”
Atomization Sprays
,
20
(
10
), pp.
863
875
.10.1615/AtomizSpr.v20.i10.30
25.
Choi
,
S.
,
Lee
,
D.
, and
Park
,
J.
,
2008
, “
Ignition and Combustion Characteristics of the Gas Turbine Slinger Combustor
,”
J. Mech. Sci. Technol.
,
22
(
3
), pp.
538
544
.10.1007/s12206-007-1106-6
26.
Lee
,
K. Y.
,
Choi
,
S. M.
,
Han
,
Y. M.
, and
Park
,
J. B.
,
2004
, “
Ignition Characteristics on the Annular Combustor With Rotating Fuel Injection System
,”
ASME
Paper No. GT2004-53233.10.1115/GT2004-53233
27.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
2001
,
Gas Turbine Theory
,
Pearson Education
, Harlow, UK.
28.
Miles
,
P. C.
, and
Gouldin
,
F. C.
,
1993
, “
Determination of the Time Constant of Fine-Wire Thermocouples for Compensated Temperature Measurements in Premixed Turbulent Flames
,”
Combust. Sci. Technol.
,
89
(
1–4
), pp.
181
199
.10.1080/00102209308924108
29.
Sasaki
,
S.
,
Masuda
,
H.
,
Higano
,
M.
, and
Hishinuma
,
N.
,
1994
, “
Simultaneous Measurements of Specific Heat and Total Hemispherical Emissivity of Chromel and Alumel by a Transient Calorimetric Technique
,”
Int. J. Thermophys.
,
15
(
3
), pp.
547
565
.10.1007/BF01563713
30.
Totten
,
G. E.
,
Shah
,
R. J.
, and
Westbrook
,
S. R.
,
2003
,
Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing
,
ASTM International
,
West Conshohocken, PA
.
31.
Olah
,
G. A.
,
2005
, “
Beyond Oil and Gas: The Methanol Economy
,”
Angew. Chem. Int. Ed.
,
44
(
18
), pp.
2636
2639
.10.1002/anie.200462121
32.
Pullman
,
J. B.
,
1978
, “
Methanol, Ethanol and Jet Fuel Emissions Comparison From a Small Gas Turbine
,”
SAE
Paper No. 781013.10.4271/781013
33.
Adelman
,
H. G.
,
Browning
,
L. H.
, and
Pefley
,
R. K.
,
1976
, “
Predicted Exhaust Emissions From a Methanol and Jet Fueled Gas Turbine Combustor
,”
AIAA J.
,
14
(
6
), pp.
793
798
.10.2514/3.61419
34.
Von KleinSmid
,
W. H.
,
Schreiber
,
H.
, and
Klapatch
,
R. D.
,
1981
, “
Methanol Combustion in a 26-MW Gas Turbine
,”
ASME
Paper No. 81-GT-64.10.1115/81-GT-64
35.
Turns
,
S.
,
2000
,
Introduction to Combustion
(Mechanical Engineering Series),
McGraw-Hill
, Singapore.
36.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
37.
Şöhret
,
Y.
,
Karakoc
,
T. H.
, and
Turan
,
O.
,
2016
, “
Using Emission Index to Determine Energy Efficiency and Environmental Parameters of a Turbofan Engine at Various Flight Phases
,”
Int. J. Global Warming
,
10
(
1/2/3
), pp.
3
15
.10.1504/IJGW.2016.077897
38.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
,
1980
, “
Weak Extinction Limits of Turbulent Heterogeneous Fuel/Air Mixtures
,”
ASME J. Eng. Power
,
102
(
2
), pp.
416
421
.10.1115/1.3230272
39.
Ateshkadi
,
A.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2000
, “
Lean Blowout Model for a Spray-Fired Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1281
1288
.10.1016/S0082-0784(00)80341-0
40.
Shih
,
W. P.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1996
, “
Stability and Emissions Characteristics of a Lean Premixed Gas Turbine Combustor
,”
Symp. Combust.
,
26
(
2
), pp.
2771
2778
.10.1016/S0082-0784(96)80115-9
41.
Ateshkadi
,
A.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
1998
, “
Effect of Hardware Geometry on Gas and Drop Behavior in a Radial Mixer Spray
,”
Symp. Combust.
,
27
(
2
), pp.
1985
1992
.10.1016/S0082-0784(98)80043-X
42.
Hung
,
W. S. Y.
,
1977
, “
The NOx Emission Levels of Unconventional Fuels for Gas Turbines
,”
ASME J. Eng. Power
,
99
(
4
), pp.
575
579
.10.1115/1.3446553
43.
Sundararaj
,
R. H.
,
Kumar
,
R. D.
,
Raut
,
A. K.
,
Sekar
,
T. C.
,
Pandey
,
V.
,
Kushari
,
A.
, and
Puri
,
S. K.
,
2019
, “
Combustion and Emission Characteristics From Biojet Fuel Blends in a Gas Turbine Combustor
,”
Energy
,
182
, pp.
689
705
.10.1016/j.energy.2019.06.060
44.
Borthwick
,
R. P.
, and
Farrell
,
P. V.
,
2002
, “
Fuel Injection Spray and Combustion Chamber Wall Impingement in Large Bore Diesel Engines
,”
SAE
Paper No. 2002-01-0496.10.4271/2002-01-0496
45.
Hinze
,
P. C.
, and
Cheng
,
W. K.
,
1993
, “
Flame Kernel Development in a Methanol Fueled Engine
,”
SAE
Paper No. 932649.10.1115/932649
You do not currently have access to this content.