Abstract

In this article, an efficient time–space multigrid (TS-MG) method for solving the harmonic balance (HB) equation system is proposed. The principle of the time–space multigrid method is to coarsen grids in both space and time dimensions simultaneously when coarse grids are formed. The inclusion of time in the time–space multigrid is to address the instability issue or diminished convergence speedup of the spatial multigrid (S-MG) due to larger grid reduced frequencies on coarse grids. With the proposed method, the unsteady flow governing equation will still be solved on all grid levels. Comparing to the finest grid, fewer harmonics and thus fewer equations will be solved consequently on coarse grids. Discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) are used to achieve solution prolongation and restriction between different time grid levels. Results from the proposed method are compared with those obtained from the traditional S-MG and time domain methods. It is found that the TS-MG method can increase solution stability, reduce analysis central processing unit (CPU) time cost required for convergence, save memory usage and has no adverse effect on solution accuracy.

References

1.
Wang
,
D.
, and
Huang
,
X.
,
2017
, “
A Complete Rotor-Stator Coupling Method for Frequency Domain Analysis of Turbomachinery Unsteady Flow
,”
Aerosp. Sci. Technol.
,
70
(
11
), pp.
367
377
.10.1016/j.ast.2017.08.025
2.
Yi
,
J.
, and
He
,
L.
,
2015
, “
Space-Time Gradient Method for Unsteady Bladerow Interaction—Part I: Basic Methodology and Verification
,”
ASME J. Turbomach.
,
137
(
11
), pp.
1
13
.10.1115/1.4031342
3.
Sicot
,
F.
,
Gomar
,
A.
,
Dufour
,
G.
, and
Dugeai
,
A.
,
2014
, “
Time-Domain Harmonic Balance Method for Turbomachinery Aeroelasticity
,”
AIAA J.
,
52
(
1
), pp.
62
71
.10.2514/1.J051848
4.
Hall
,
K.
, and
Crawley
,
E.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA J.
,
27
(
6
), pp.
777
787
.10.2514/3.10178
5.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.10.1115/1.2841747
6.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
7.
Chen
,
T.
,
Vasanthakumar
,
P.
, and
He
,
L.
,
2001
, “
Analysis of Unsteady Blade Row Interaction Using Nonlinear Harmonic Approach
,”
ASME J. Propul. Power
,
17
(
3
), pp.
651
658
.10.2514/2.5792
8.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
9.
Hall
,
K.
,
Ekici
,
K.
,
Thomas
,
J.
, and
Dowell
,
E.
,
2013
, “
Harmonic Balance Methods Applied to Computational Fluid Dynamics Problems
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
52
67
.10.1080/10618562.2012.742512
10.
Ekici
,
K.
, and
Hall
,
K.
,
2007
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA J.
,
45
(
5
), pp.
1047
1057
.10.2514/1.22888
11.
Su
,
X.
, and
Yuan
,
X.
,
2010
, “
Implicit Solution of Time Spectral Method for Periodic Unsteady Flows
,”
J. Eng. Thermophys.
,
63
(
7
), pp.
860
876
.10.1002/fld.2111
12.
Liu
,
L.
,
Thomas
,
J. P.
,
Dowell
,
E. H.
,
Attar
,
P.
, and
Hall
,
K. C.
, and.,
2006
, “
A Comparison of Classical and High Dimensional Harmonic Balance Approaches for a Duffing Oscillator
,”
J. Comput. Phys.
,
215
(
1
), pp.
298
320
.10.1016/j.jcp.2005.10.026
13.
Mcmullen
,
M.
,
Jameson
,
A.
, and
Alonso
,
J.
,
2006
, “
Demonstration of Nonlinear Frequency Domain Methods
,”
AIAA J.
,
44
(
7
), pp.
1428
1435
.10.2514/1.15127
14.
Mcmullen
,
M. S.
, and
Jameson
,
A.
,
2006
, “
The Computational Efficiency of Non-Linear Frequency Domain Methods
,”
J. Comput. Phys.
,
212
(
2
), pp.
637
661
.10.1016/j.jcp.2005.07.021
15.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,”
AIAA
Paper No. 81-1259.10.2514/6.81-1259
16.
Jameson
,
A.
, and
Yoon
,
S.
,
1986
, “
Multigrid Solution of the Euler Equations Using Implicit Schemes
,”
AIAA J.
,
24
(
11
), pp.
1737
1743
.10.2514/3.9518
17.
Jameson
,
A.
,
1983
, “
Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method
,”
Appl. Math. Comput.
,
13
(
3–4
), pp.
327
355
.10.1016/0096-3003(83)90019-X
18.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower Upper Symmetric Gauss-Seidel Method for the Euler and Navier-Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.10.2514/3.10007
19.
Huang
,
X.
,
Wu
,
H.
, and
Wang
,
D.
,
2018
, “
Implicit Solution of Harmonic Balance Equation System Using the LU-SGS Method and One-Step Jacobi/Gauss-Seidel Iteration
,”
Int. J. Comput. Fluid Dyn.
,
32
(
4–5
), pp.
218
232
.10.1080/10618562.2018.1508658
20.
Wang
,
D.
, and
Huang
,
X.
,
2017
, “
Solution Stabilization and Convergence Acceleration for the Harmonic Balance Equation System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), pp.
367
377
.10.1115/1.4035912
21.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA J.
,
94
(
01
), pp.
1
22
.10.2514/6.1992-439
22.
Denton
,
J.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
23.
Huang
,
X.
,
He
,
L.
, and
Bell
,
D.
,
2008
, “
Effects of Tip Clearance on Aerodynamic Damping in a Linear Turbine Cascade
,”
ASME J. Propul. Power
,
24
(
1
), pp.
26
33
.10.2514/1.25174
You do not currently have access to this content.