Abstract

Heat transfer within the rotating compressor cavity of an aero-engine is predominantly governed by buoyancy, which can be characterized by the Grashof number. Unsteady and unstable buoyancy-induced flow structures influence the temperatures and stresses in the compressor rotors, and these affect the radial growth of the disks. In addition, the heat transfer from the disks and shroud increases the temperature of the throughflow of cooling air. This paper contains two connected parts. First, a heat transfer correlation for the shroud of a rotating cavity was determined from steady-state heat flux measurements collected in the bath compressor-cavity rig at engine-simulated conditions. The Nusselt numbers were based on the cavity air temperature adjacent to the shroud, which was predicted using the Owen–Tang buoyancy model. Heat transfer from the shroud was consistent with free convection from a horizontal plate in a gravitational field. Maximum likelihood estimation was used with a Rayleigh–Bénard equation to correlate the shroud Nusselt number with the local Grashof number. Second, an energy balance was used to calculate the enthalpy rise of the axial throughflow from the measured disk and shroud heat fluxes. Disk fluxes were derived from radial distributions of measured steady-state disk temperatures using a Bayesian model and the equations for a circular fin. The calculated throughflow temperature rise was consistent with direct thermocouple measurements. The complex, three-dimensional flow near the cavity entrance can result in enthalpy exchange penetrating upstream in the throughflow, and rotationally induced flow can create upstream axial flow in the outer part of the annulus.

References

1.
Fitzpatrick
,
J. N.
,
2013
, “
Coupled Thermal-Fluid Analysis With Flowpath-Cavity Interaction in a Gas Turbine Engine
,”
Master's thesis
,
Purdue University
, West Lafayette, IN. http://hdl.handle.net/1805/4441
2.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME. J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
3.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME
Paper No. GT2020-14422.10.1115/GT2020-14422
4.
Tang
,
H.
, and
Owen
,
J. M.
,
2017
, “
Effect of Buoyancy-Induced Rotating Flow on Temperatures of Compressor Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062506
.10.1115/1.4035400
5.
Jackson
,
R.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME
Paper No. GT2020-14427.10.1115/GT2020-14427
6.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disc Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME. J. Turbomach.
, 134(5), p. 051016.10.1115/1.4003965
7.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
, p.
108468
.10.1016/j.ijheatfluidflow.2019.108468
8.
Long
,
C. A.
, and
Tucker
,
P. G.
,
1994
, “
Numerical Computations of Laminar Flow in a Heated Rotating Cavity With an Axial Throughflow of Air
,”
Int. J. Num. Meth. Heat Fluid Flow
,
4
(
4
), pp.
347
365
.10.1108/EUM0000000004043
9.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.10.1016/j.ijheatfluidflow.2007.04.009
10.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “
Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor
,”
ASME
Paper No. GT2017-64884.10.1115/GT2017-64884
11.
Gao
,
F.
, and
Chew
,
J. W.
,
2020
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME
Paper No. GT2020-16220.10.1115/GT2020-16220
12.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid. Mech.
,
407
, pp.
27
56
.10.1017/S0022112099007545
13.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497.10.1115/GT2018-75497
14.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J. W.
, and
Young
,
C.
,
2007
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.10.1115/1.2364192
15.
Owen
,
J. M.
, and
Tang
,
H.
,
2015
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME. J. Turbomach.
,
137
(
11
), p.
111005
.10.1115/1.4031353
16.
Tang
,
H.
, and
Owen
,
J. M.
,
2021
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
, 143(5), p. 051005.10.1115/1.4050114
17.
Pountney
,
O.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C.
,
Scobie
,
J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Heat Flux Gauges Based on Their Physical Properties
,”
Proc. Inst. Mech. Eng., Part A
, pp. 1–11.10.1177/0957650920982103
18.
Tang
,
H.
,
Puttock-Brown
,
M. R.
, and
Owen
,
J. M.
,
2018
, “
Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p. 071902.10.1115/1.4038756
19.
Jackson
,
R.
,
Tang
,
H.
,
Scobie
,
J.
,
Pountney
,
O.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME
Paper No. GT2021-59090.10.1115/GT2021-59090
20.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Discs
,”
ASME. J. Turbomach.
,
137
(
12
), p.
121003
.10.1115/1.4031355
21.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
443
447
.10.1115/1.3450224
22.
Gilham
,
S.
,
Ivey
,
P. C.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1991
, “
Self-Induced Flow in a Rotating Tube
,”
J. Fluid. Mech.
,
230
, pp.
505
524
.10.1017/S0022112091000873
23.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-271747.10.1115/GT2014-271747
24.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.