Abstract

With an increase in renewable energy generation, thermal power generation has been switched to standby power in various parts of the world. Ammonia, one of the storage and transport media for H2, is produced in a highly efficient oxyfuel integrated coal gasification combined cycle (IGCC) system with CO2 capture, for the future hydrogen-using society. Using ammonia as an industrial raw material, agricultural fertilizer, and transportation fuel, energy systems can be established by combining renewable energy and thermal power generation. Therefore, it is possible to simultaneously construct a thermal power supply system suitable for backup power source owing to the fluctuation of the renewable power generation and to improve the availability of the thermal power plant and the load-leveling. This will serve as an incentive to build a future zero-emission thermal power plant. In this study, an oxy-fuel IGCC power generation coproduced with ammonia and CO2 capture is conceptually proposed. Furthermore, the features and challenges of a gas turbine that fuels CO2-free NH3 are investigated. In particular, the combustion exhaust characteristics of ammonia/oxygen-fired semiclosed cycle gas turbine combustor in comparison with those of the conventional fuels are characterized through a kinetic analysis.

References

1.
New Energy and Industrial Technology Development Organization, 1995, “Summary of Annual Reports (1994)
,” New Energy and Industrial Technology Development Organization, Kanagawa, Japan, accessed Oct. 1,
2019
, http://www.enaa.or.jp/WE-NET/report/1994/cont94_e.html
2.
T-Raissi
,
A.
, and
Block
,
D. L.
,
2004
, “
Hydrogen: Automotive Fuel of the Future
,”
IEEE Power Energy
,
2
(
6
), pp.
40
45
.10.1109/MPAE.2004.1359020
3.
Bicer
,
Y.
, and
Dincer
,
I.
,
2017
, “
Evaluation of Renewable and Conventional Ammonia as a Potential Solution
,”
Towards 100% Renewable Energy, Springer Proceedings in Energy
,
T. S.
Uyar
, ed.,
Springer International Publishing
,
Switzerland
.
4.
Bartel
,
J. R.
,
2008
, “
A Feasibility Study of Implementing an Ammonia Economy (December 2008)
,”
Graduate theses and dissertations
, Iowa State University, Ames, IA.https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2119&context=etd
5.
Soloveichik
,
G. L.
,
2016
, “
Ammonia for Energy Storage and Delivery
,” 13th Annual NH3 Fuel Conference, Keynote Speech 2016, Ammonia Energy Association, Brooklyn, NY, accessed Oct. 1, 2019, https://nh3fuelassociation.org/wp-content/uploads/2016/09/grigorii-soloveichik-ammonia-for-energy-storage-and-delivery-keynote-nh3fa2016.pdf
6.
for example
Longanbach
,
J. R.
,
Stiegel
,
G. J.
,
Rutkowski
,
M. D.
,
Buchanan
,
T. L.
,
Klett
,
M. G.
, and
Schoff
,
R. L.
,
2003
, “
Capital and Operating Cost of Hydrogen Production From Coal Gasification - Final Report
,” National Energy Technology Laboratory, U.S. DOE, Washington, DC.
7.
Gray
,
D.
, and
Tomlinson
,
G.
,
2001
, “
Hydrogen From Coal
,” Mitretek, Falls Church, VA, Technical Paper No. MTR 2002-31, Contract No.
DE-AM26-99FT40465
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.5431&rep=rep1&type=pdf
8.
Shirai
,
H.
,
Hara
,
S.
,
Koda
,
E.
,
Watanabe
,
H.
,
Inumaru
,
J.
, and
Abe
,
T.
,
2008
, “
Conceptual Study on High Efficient Coal Gasification Combined Cycle Power Generation System With CO2 Capture Combined With Oxygen-CO2 Blown Coal Gasifier
,”
The 33rd International Technical Conference on Coal Utilization & Fuel Systems
, Clearwater, FL, June 1–5, pp.
509
520
.
9.
Nakao
,
Y.
,
2009
, “
Proposal for New CO2 Capture IGCC System
,”
34th International Technical Conference on Coal Utilization & Fuel Systems
, Clearwater, FL, May 31–June 4, pp.
539
550
.
10.
Oki
,
Y.
,
Hamada
,
H.
,
Kobayashi
,
M.
,
Yuri
,
I.
, and
Hara
,
S.
,
2017
, “
Development of High-Efficiency Oxy-Fuel IGCC System
,”
Energy Procedia
,
114
, pp.
501
504
.10.1016/j.egypro.2017.03.1192
11.
Hasegawa
,
T.
,
2012
, “
Combustion Performance in a Semiclosed Cycle Gas Turbine for IGCC Fired With CO-Rich Syngas and Oxy-Recirculated Exhaust Streams
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
091401
.10.1115/1.4006985
12.
Kobayashi
,
M.
, and
Akiho
,
H.
,
2017
, “
Dry Syngas Purification Process for Coal Gas Produced in Oxy-Fuel Type Integrated Gasification Combined Cycle Power Generation With Carbon Dioxide Capturing Feature
,”
Environ. Manage
,
203
, pp.
925
936
.10.1016/j.jenvman.2017.05.067
13.
Umemoto
,
S.
,
Kajitani
,
S.
, and
Hara
,
S.
,
2010
, “
Modeling of Coal Char Gasification in Coexistence of CO2 and H2O
,”
Proceedings of 27th Annual International Pittsburgh Coal Conference
,
The University of Pittsburgh
, Hilton Istanbul, Turkey, Oct. 11–14, pp.
946
952
.
14.
Kidoguchi
,
K.
,
Hara
,
S.
,
Oki
,
Y.
,
Kajitani
,
S.
,
Umemoto
,
S.
, and
Inumaru
,
J.
,
2011
, “
Development of Oxy-Fuel IGCC System With CO2 Recirculation for CO2 Capture -Experimental Examination on Effect of Gasification Reaction Promotion by CO2 Enriched Using Bench Scale Gasifier Facility
,”
ASME
Paper No. POWER2011-55458.10.1115/POWER2011-55458
15.
Thomas
,
G.
,
2000
, “
Overview of Storage Development DOE Hydrogen Program
,” US DOE Hydrogen Program, Annual Review May 9–11, San Ramon, CA, accessed Oct. 1, 2019, https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/storage.pdf
16.
for example
Klein
,
D.
,
Bauer
,
N.
,
Bodirsky
,
B.
,
Dietrich
,
J. P.
, and
Popp
,
A.
,
2011
, “
Bio-IGCC With CCS as a Long-Term Mitigation Option in a Coupled Energy-System and Land-Use Model
,”
Energy Procedia
,
4
, pp.
2933
2940
.10.1016/j.egypro.2011.02.201
17.
Thomas
,
G.
, and
Parks
,
G.
,
2006
, “
Potential Roles of Ammonia in a Hydrogen Economy, a Study of Issues Related to the Use Ammonia for on-Board Vehicular Hydrogen Storage
,” U.S. Department of Energy, Washington, DC, accessed Oct. 1, 2019, https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf
18.
Duijm
,
N. J.
,
Markert
,
F.
, and
Paulsen
,
J. L.
,
2005
, “
Safety Assessment of Ammonia as a Transport Fuel
,” Risø National Laboratory, Roskilde, Denmark, accessed Oct. 1, 2019, https://nh3fuelassociation.org/wp-content/uploads/2013/05/riso-ammonia-transport-safety-report.pdf
19.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Kunkuma
,
K. D.
,
Somarathne
,
A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
20.
for example
Kunkuma
,
K. D.
,
Somarathne
,
A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/Air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27388
27399
.10.1016/j.ijhydene.2017.09.089
21.
Hussein
,
N. A.
,
Valera-Medina
,
A.
, and
Alsaegh
,
A. S.
,
2019
, “
Ammonia-Hydrogen Combustion in a Swirl Burner With Reduction of NOx Emissions
,”
Energy Procedia
,
158
, pp.
2305
2310
.10.1016/j.egypro.2019.01.265
22.
Kurata
,
O.
,
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kawano
,
M.
,
Arai
,
K.
,
Okafor
,
E. C.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Development of Low-NOx Combustor of Micro Gas Turbine Firing Ammonia Gas
,”
NH3 Fuel Association, 15th Annual NH3 Fuel Conference
, Pittsburgh, PA, Oct. 31–Nov. 1, Paper No. 542b. https://www.ammoniaenergy.org/paper/development-of-low-nox-combustor-of-micro-gas-turbine-firing-ammonia-gas/
23.
Tanigawa
,
H.
,
2018
, “
Test Results of the Ammonia Mixed Combustion at Mizushima Power Station Unit No. 2 and Related Patent Applications
,”
NH3 Fuel Association, 15th Annual NH3 Fuel Conference, AIChE Annual Meeting
, Oct. 31, Pittsburgh, PA, Paper No. 549a. https://www.ammoniaenergy.org/paper/test-results-of-the-ammonia-mixed-combustion-at-mizushima-power-station-unit-no-2-and-related-patent-applications/
24.
Yamamoto
,
A.
,
Kimoto
,
M.
,
Ozawa
,
Y.
, and
Hara
,
S.
,
2018
, “
Basic Co-Firing Characteristics of Ammonia With Pulverized Coal in a Single Burner Test Furnace
,”
15th Annual NH3 Fuel Conference
, Pittsburgh, PA, Oct. 31–Nov. 1, Paper No. 542a.https://www.ammoniaenergy.org/paper/basic-co-firing-characteristics-of-ammonia-with-pulverized-coal-in-a-single-burner-test-furnace/
25.
Kajitani
,
S.
,
Suzuki
,
N.
,
Ashizawa
,
M.
, and
Hara
,
S.
,
2006
, “
CO2 Gasification Rate Analysis of Coal Char in Entrained Flow Coal Gasifier
,”
Fuel
,
85
(
2
), pp.
163
169
.10.1016/j.fuel.2005.07.024
26.
Kobayashi
,
M.
, and
Akiho
,
H.
,
2017
, “
Performance Evaluation of Honeycomb Shaped Sorbent for Sulfur Removal in Advanced Oxy-Fuel IGCC Power Generation Plant
,”
Fuel
,
203
, pp.
1015
1025
.10.1016/j.fuel.2017.02.087
27.
Kobayashi
,
M.
,
Akiho
,
H.
, and
Nakao
,
Y.
,
2015
, “
Performance Evaluation of Porous Sodium Aluminate Sorbent for Halide Removal Process in Oxy-Fuel IGCC Power Generation Plant
,”
Energy
,
92
, pp.
320
327
.10.1016/j.energy.2015.04.055
28.
Akiho
,
H.
, and
Kobayashi
,
M.
,
2019
, “
Development of Reusable Mercury Sorbents for an Oxy-Fuel IGCC Power Generation System
,”
Fuel
,
253
(
1
), pp.
1385
1391
.10.1016/j.fuel.2019.05.075
29.
Ozawa
,
Y.
, and
Tochihara
,
Y.
,
2011
, “
Catalytic Decomposition of Ammonia in Simulated Coal-Derived Gas Over Supported Nickel Catalysts
,”
Catal. Today
,
164
(
1
), pp.
528
532
.10.1016/j.cattod.2010.11.037
30.
Yuri
,
I.
, and
Nishida
,
H.
,
2010
, “
Fundamental Combustion Characteristics of Gas Turbine for CO2 Capture IGCC System—2nd Report—(Figure 8)
,” Central Research Institute of Electric Power Industry, Report No. M14002, p.
7
(in Japanese), accessed Oct. 1, 2019, https://criepi.denken.or.jp/jp/kenkikaku/report/detail/M14002.html
31.
Reese
,
M.
, and
Marquart
,
C.
,
2012
, “
Lessons Learned in Developing a Wind-to-Ammonia Pilot Plant
,”
Ninth Annual NH3 Fuel Conference
, San Antonio, TX, Oct. 2.http://nh3fuel.files.wordpress.com/2012/10/reese-final-2012-nh3-conference.pdf
32.
Leighty
,
W. C.
,
2019
, “
Solid State Ammonia Synthesis (SSAS) Pilot Plant Demonstration System for Renewable Energy (RE) Firming Storage, Transmission, and Export
,” Alaska Applied Sciences, Juneau, AK.https://docplayer.net/19883110-Solid-state-ammonia-synthesis-ssas-pilot-plant-demonstration-system-for-renewable-energy-re-firming-storage-transmission-and-export.html
33.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.10.1016/0360-1285(89)90017-8
34.
Hasegawa
,
T.
, and
Sato
,
M.
,
1998
, “
Study of Ammonia Removal From Coal-Gasified Fuel
,”
Combust. Flame
,
114
(
1–2
), pp.
246
258
. ISSN 0010-2180.10.1016/S0010-2180(97)00315-5
35.
Tian
,
Z.
,
Li
,
Y.
,
Zhang
,
L.
,
Glarborg
,
P.
, and
Qi
,
F.
,
2009
, “
An Experimental and Kinetic Modeling Study of Premixed NH3/CH4/O2/Ar Flames at Low Pressure
,”
Combust. Flame
,
156
(
7
), pp.
1413
1426
.10.1016/j.combustflame.2009.03.005
36.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4-NH3-Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
37.
Hewlett
,
S. G.
,
Valera-Medina
,
A.
,
Pugh
,
D. G.
, and
Bowen
,
P. J.
,
2019
, “
Gas Turbine Co-Firing of Steelworks Ammonia With Coke Oven Gas or Methane: A Fundamental and Cycle Analysis
,”
ASME
Paper No. GT2019-91404.10.1115/GT2019-91404
38.
Chase
,
J. M. W.
,
Davies
,
C. A.
,
Downey
,
J. R.
, Jr.
,
Frurip
,
D. J.
,
McDonald
,
R. A.
, and
Syverud
,
A. N.
,
1985
, “
JANAF Thermodynamical Tables, 3rd Edition
,”
J. Phys. Chem. Ref. Data
,
14
.10.1021/ac00200a742
39.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1990
, “
The CHEMKIN Thermodynamic Data Base
,” Sandia, Livermore, CA, Report No.
SAND 87-8215B
.https://www.osti.gov/biblio/7073290
40.
Hindmarsh
,
A. C.
,
1974
, “
GEAR: Ordinary Differential Equation System Solver
,” Lawrence Livermore Laboratory, University of California, Livermore, CA, Report No. UCID-30001, Rev.3.
41.
Yuri
,
I.
, and
Nishida
,
H.
,
2010
, “
Fundamental Combustion Characteristics of Gas Turbine for CO2 Capture IGCC System—1std Report—(Figure 3 and 5)
,” Central Research Institute of Electric Power Industry, Tokyo, Japan, Report No. M14001, pp. 3 and 5 (in Japanese), accessed Oct. 1, 2019, https://criepi.denken.or.jp/jp/kenkikaku/report/detail/M14001.html
42.
Hasegawa
,
T.
,
Sato
,
M.
,
Sakuno
,
S.
, and
Ueda
,
H.
,
2001
, “
Numerical Analysis on Application of Selective Non Catalytic Reduction to Wakamatsu PFBC Demonstration Plant
,”
Presented at the International Joint Power Generation Conference
, New Orleans, LA, 2001-6-6.
43.
Nakata
,
T.
,
Sato
,
M.
, and
Hasegawa
,
T.
,
1998
, “
Reaction Kinetics of Fuel NOx Formation for Gas Turbine Conditions
,”
ASME, J. Eng. Gas Turbines Power
,
120
(
3
), pp.
474
480
.10.1115/1.2818169
You do not currently have access to this content.