Abstract

The dynamic characteristics of the turbofan engine vary greatly in the full flight envelope, which makes the problem of dynamic uncertainty and input uncertainty very prominent. This brings different degrees of performance impact to the engine control system and even makes it lose stability. This paper proposes a multivariable adaptive control method for dealing with multivariable dynamic uncertainty and input uncertainty. First, for the case where the number of state variables is less than or equal to the number of input variables and the input matrix satisfies the full-rank condition of the row, the existence of the right pseudo-inverse matrix of the input matrix can be guaranteed. Then, the dynamic uncertainty and input uncertainty can be mathematically converted into standard matched uncertainty. Second, the Lyapunov quadratic function is constructed by the closed-loop tracking error vector and the adaptively adjustable control parameter estimation errors, and the Lyapunov stability constraint is considered. Then, under the premise of considering the dynamic characteristics of the actuator, an adaptive control algorithm for multivariable uncertainty model of turbofan engine is derived. Finally, ground and high-altitude simulations are carried out on the dual-loop control system based on the nonlinear dynamic model of the turbofan engine. The results show that the control system has robust stability and anti-interference performance for dynamic uncertainty and input uncertainty of turbofan engine in the full flight envelope. By introducing stronger parameter change rate information to the controller, its performance can be further improved, and the transient state control is more stable.

References

1.
Nguyen
,
N. T.
,
2018
,
Model-Reference Adaptive Control
,
Springer Nature Press
,
Cham, Switzerland
, Chap. 1.
2.
Pan
,
M. X.
, and
Huang
,
J. Q.
,
2003
, “
Summary of Model Reference Adaptive Control of Aeroengine
,”
Aeroengine
,
29
(
2
), pp.
51
54
.
3.
Rohrs
,
C.
,
Valavani
,
L.
,
Athans
,
M.
, and
Stein
,
G.
,
1985
, “
Robustness of Continuous-Time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
,
30
(
9
), pp.
881
889
.10.1109/TAC.1985.1104070
4.
Nian
,
F. Q.
,
2014
, “
Model Reference Adaptive Control for Aeroengine
,”
Master's thesis
,
Northeastern University
,
Liaoning, China
.
5.
Nian
,
F. Q.
,
Ma
,
H. J.
, and
Yang
,
G. H.
,
2015
, “
Model Reference Adaptive Control for Aeroengine
,”
27th Chinese Control and Decision Conference
, Qingdao, China, May 23–25, pp.
6563
6568
.10.1109/CCDC.2015.7162005
6.
Chakrabarty
,
A. K.
, and
Bhattacharya
,
S.
,
2016
, “
Lyapunov Based Two-Stage Robust Model Reference Adaptive Controller for Linear Plants With Time Varying Bounded Uncertainties
,”
IFAC PapersOnLine
,
49
(
1
), pp.
213
218
.10.1016/j.ifacol.2016.03.055
7.
Xiao
,
H. L.
,
Li
,
H. C.
, and
Li
,
W. M.
,
2018
, “
Research on Adaptive Tracking Compensation Control With Uncertainty and Its Application in Aero-Engine
,”
J. Propul. Technol.
,
39
(
4
), pp.
898
904
.10.13675/j.cnki.tjjs.2018.04.022
8.
Fakhari
,
V.
,
Ohadi
,
A.
, and
Talebi
,
H. A.
,
2015
, “
A Robust Adaptive Control Scheme for an Active Mount Using a Dynamic Engine Model
,”
J. Vib. Control
,
21
(
11
), pp.
2223
2245
.10.1177/1077546313506927
9.
Zhang
,
L.
,
Li
,
H.
, and
Han
,
X. B.
,
2012
, “
Novel e-Modification Robust Adaptive Control for Aeroengine
,”
Comput. Modernization
, (
7
), pp.
72
74
.https://en.cnki.com.cn/Article_en/CJFDTotal-JYXH201207022.htm
10.
Tao
,
G.
,
2003
,
Adaptive Control Design and Analysis
,
Wiley-IEEE Press
,
Piscataway, NJ
.
11.
Nair
,
A. P.
,
Selvaganesan
,
N.
, and
Lalithambika
,
V. R.
,
2016
, “
Lyapunov Based PD/PID in Model Reference Adaptive Control for Satellite Launch Vehicle Systems
,”
Aerosp. Sci. Technol.
,
51
, pp.
70
77
.10.1016/j.ast.2016.01.017
12.
Wang
,
Z.
, and
Pan
,
Y. P.
,
2017
, “
Robust Adaptive Fault Tolerant Control for a Class of Nonlinear Systems With Dynamic Uncertainties
,”
Opt.-Int. J. Light Electron Opt.
,
131
, pp.
941
952
.10.1016/j.ijleo.2016.11.209
13.
Yan
,
Y. C.
,
Zhang
,
S. J.
, and
Meng
,
Q. M.
,
2000
, “
Preliminary Study of Model Reference Adaptive Control of Aeroengine
,”
Aeroengine
, (
2
), pp.
52
55
.
14.
Ma
,
J.
, and
Lu
,
J.
,
2009
, “
Aircraft Engine MRAC Based on Elman Neural Network
,”
Comput. Simul.
,
26
(
7
), pp.
69
72
.https://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJZ200907018.htm
15.
Zhang
,
M.
,
2008
, “
The Research on Robust Adaptive Control With Neural Network Compensation for Aeroengines
,” Master's thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
16.
Zhu
,
M. Y.
,
Wang
,
X.
,
Dan
,
Z. H.
,
Zhang
,
S.
, and
Pei
,
X. T.
,
2019
, “
Two Freedom Linear Parameter Varying μ Synthesis Control for Flight Environment Testbed
,”
Chin. J. Aeronaut.
,
32
(
5
), pp.
1204
1214
.10.1016/j.cja.2019.01.017
17.
Zhu
,
M. Y.
,
Wang
,
X.
,
Yang
,
S. B.
,
Chen
,
H. R.
,
Miao
,
K. Q.
, and
Gu
,
N. N.
,
2019
, “
Two Degree-of-Freedom μ Synthesis Control With Kalman Filter for Flight Environment Simulation Volume With Sensors Uncertainty
,”
ASME
Paper No. GT2019-90429.10.1115/GT2019-90429
You do not currently have access to this content.