Abstract

The precessing vortex core (PVC) phenomenon in swirling jets is a helical instability in the flow driven by the coherent precession of the vortex breakdown bubble (VBB) around the flow axis, resulting in the helical rollup of the shear layer. This instability is driven by flow processes in the region upstream of the VBB. Centerbodies, commonly employed in combustor nozzles, create a centerbody wake recirculation zone (CWRZ) that can interfere with VBB precession and hence suppress the PVC. We study this phenomenon in a swirl nozzle with a centerbody whose end face is flush with the nozzle exit plane, using large eddy simulations (LES) and linear hydrodynamic stability analysis for flow Reynolds numbers Re = 48,767 and 82,751, based on nozzle exit diameter and bulk flow velocity. For one of the Re = 82,751 cases, the centerbody end face diameter is halved, resulting in the onset of coherent VBB precession. Linear stability analysis reveals a marginally unstable mode in this case. The same mode is found to be stable in the nominal cases. Structural sensitivity analysis shows that the VBB precession eigenmode is sensitive to changes in the time-averaged flow in the VBB-CWRZ merger region. This suggests that the reduction in CWRZ length due to halving the centerbody end face diameter is the reason for the onset of VBB precession. These results suggest that in general, spatial separation between the CWRZ and VBB can result in the onset of VBB precession and the emergence of PVC oscillations in flows with swirl.

References

1.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
2.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
3.
Liang
,
H.
, and
Maxworthy
,
T.
,
2004
, “
Vortex Breakdown and Mode Selection of a Swirling Jet in Stationary or Rotating Surroundings
,”
APS Div. Fluid Dyn. Meeting Abstr.
,
1
, p. NH.006.https://www.researchgate.net/publication/252902482_Vortex_Breakdown_and_Mode_Selection_of_a_Swirling_Jet_in_Stationary_or_Rotating_Surroundings
4.
Hall
,
M.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.10.1146/annurev.fl.04.010172.001211
5.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
6.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.10.1016/0376-0421(88)90007-3
7.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
8.
Escudier
,
M.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow-a Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
9.
Billant
,
P.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
10.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly-Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
, p. A29.10.1017/jfm.2019.903
11.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
12.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
13.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
14.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.10.1016/j.combustflame.2015.12.007
15.
Shanbhogue
,
S.
,
Sanusi
,
Y.
,
Taamallah
,
S.
,
Habib
,
M.
,
Mokheimer
,
E.
, and
Ghoniem
,
A.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
16.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2019
, “
Experimental Study of Precessing Vortex Core Impact on Liquid Fuel Spray in a Gas Turbine Combustor
,”
ASME
Paper No. GT2019-91619
.10.1115/GT2019-91619
17.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
18.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
19.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
20.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re= 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
21.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2019
, “
Phase-Opposition Control of the Precessing Vortex Core in Turbulent Swirl Flames for Investigation of Mixing and Flame Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11),
p.
111008
.10.1115/1.4044469
22.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
23.
Kaiser
,
T. L.
,
Oberleithner
,
K.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2019
, “
Examining the Effect of Geometry Changes in Industrial Fuel Injection Systems on Hydrodynamic Structures With Biglobal Linear Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
, 142(1), p.
011024
.10.1115/1.4045018
24.
Sheen
,
H.
,
Chen
,
W.
, and
Jeng
,
S.
,
1996
, “
Recirculation Zones of Unconfined and Confined Annular Swirling Jets
,”
AIAA J.
,
34
(
3
), pp.
572
579
.10.2514/3.13106
25.
Li
,
K.
, and
Tankin
,
R. S.
,
1987
, “
A Study of Cold and Combusting Flow Around Bluff-Body Combustors
,”
Combust. Sci. Technol.
,
52
(
4–6
), pp.
173
206
.10.1080/00102208708952576
26.
Smith
,
T. E.
,
Chterev
,
I. P.
,
Emerson
,
B. L.
,
Noble
,
D. R.
, and
Lieuwen
,
T. C.
,
2018
, “
Comparison of Single-and Multinozzle Reacting Swirl Flow Dynamics
,”
J. Propul. Power
,
34
(
2
), pp.
384
394
.10.2514/1.B36623
27.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
28.
Mathew
,
J.
,
Lechner
,
R.
,
Foysi
,
H.
,
Sesterhenn
,
J.
, and
Friedrich
,
R.
,
2003
, “
An Explicit Filtering Method for Large Eddy Simulation of Compressible Flows
,”
Phys. Fluids
,
15
(
8
), pp.
2279
2289
.10.1063/1.1586271
29.
Mathew
,
J.
,
Foysi
,
H.
, and
Friedrich
,
R.
,
2006
, “
A New Approach to Les Based on Explicit Filtering
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
594
602
.10.1016/j.ijheatfluidflow.2006.02.007
30.
Mathew
,
J.
,
2016
, “
Explicit Filtering for Large Eddy Simulation as Use of a Spectral Buffer
,” arXiv preprint
arXiv:1610.01738
.https://arxiv.org/abs/1610.01738
31.
Mathew
,
J.
, and
Chakravorty
,
S.
,
2018
, “
Large-Eddy Simulation of Nonpremixed Flames by Explicit Filtering
,”
Modeling and Simulation of Turbulent Combustion
,
Energy, Environment, and Sustainability
,
Springer, Singapore
, pp.
429
445
.
32.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
,
11
(
7
), pp.
1699
1701
.10.1063/1.869867
33.
Dunca
,
A.
, and
Epshteyn
,
Y.
,
2006
, “
On the Stolz–Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows
,”
SIAM J. Math. Anal.
,
37
(
6
), pp.
1890
1902
.10.1137/S0036141003436302
34.
Wang
,
Q.
, and
Ihme
,
M.
,
2017
, “
Regularized Deconvolution Method for Turbulent Combustion Modeling
,”
Combust. Flame
,
176
, pp.
125
142
.10.1016/j.combustflame.2016.09.023
35.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Computat. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
36.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.10.1006/jcph.2002.7117
37.
Kennedy
,
C. A.
, and
Carpenter
,
M. H.
,
1994
, “
Several New Numerical Methods for Compressible Shear-Layer Simulations
,”
Appl. Numer. Math.
,
14
(
4
), pp.
397
433
.10.1016/0168-9274(94)00004-2
38.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Computat. Phys.
,
68
(
1
), pp.
1
24
.10.1016/0021-9991(87)90041-6
39.
Thompson
,
K. W.
,
1990
, “
Time-Dependent Boundary Conditions for Hyperbolic Systems, II
,”
J. Computat. Phys.
,
89
(
2
), pp.
439
461
.10.1016/0021-9991(90)90152-Q
40.
Poinsot
,
T. J.
, and
Lelef
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Computat. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
41.
Sutherland
,
J. C.
, and
Kennedy
,
C. A.
,
2003
, “
Improved Boundary Conditions for Viscous, Reacting, Compressible Flows
,”
J. Computat. Phys.
,
191
(
2
), pp.
502
524
.10.1016/S0021-9991(03)00328-0
42.
Carpenter
,
M. H.
,
Gottlieb
,
D.
, and
Abarbanel
,
S.
,
1994
, “
Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes
,”
J. Comput. Phys.
,
111
(
2
), pp.
220
236
.10.1006/jcph.1994.1057
43.
Hemchandra
,
S.
,
2012
, “
Premixed Flame Response to Equivalence Ratio Fluctuations: Comparison Between Reduced Order Modeling and Detailed Computations
,”
Combust. Flame
,
159
(
12
), pp.
3530
3543
.10.1016/j.combustflame.2012.08.003
44.
Sankaran
,
R.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Structure of a Spatially Developing Turbulent Lean Methane–Air Bunsen Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1291
1298
.10.1016/j.proci.2006.08.025
45.
Jarkowski
,
M.
,
Woodgate
,
M.
,
Barakos
,
G.
, and
Rokicki
,
J.
,
2014
, “
Towards Consistent Hybrid Overset Mesh Methods for Rotorcraft CFD
,”
Int. J. Numer. Methods Fluids
,
74
(
8
), pp.
543
576
.10.1002/fld.3861
46.
Douglas
,
C.
,
Lim
,
J.
,
Smith
,
T.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Jiang
,
N.
,
Fugger
,
C.
,
Yi
,
T.
,
Felver
,
J.
,
Roy
,
S.
, and
Gord
,
J.
,
2019
, “
Measurements of Periodic Reynolds Stress Oscillations in a Forced Turbulent Premixed Swirling Flame
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011001
.10.1115/1.4040686
47.
Schmid
,
P. J.
,
Henningson
,
D. S.
, and
Jankowski
,
D.
,
2002
, “
Stability and Transition in Shear Flows. Applied Mathematical Sciences, Vol. 142
,”
ASME Appl. Mech. Rev.
,
55
(
3
), pp.
B57
B59
.10.1115/1.1470687
48.
Juniper
,
M. P.
, and
Pier
,
B.
,
2015
, “
The Structural Sensitivity of Open Shear Flows Calculated With a Local Stability Analysis
,”
Eur. J. Mech.-B/Fluids
,
49
, pp.
426
437
.10.1016/j.euromechflu.2014.05.011
49.
Manoharan
,
K.
,
Smith
,
T.
,
Emerson
,
B.
,
Douglas
,
C. M.
,
Lieuwen
,
T.
, and
Hemchandra
,
S.
,
2017
, “
Velocity Field Response of a Forced Swirl Stabilized Premixed Flame
,”
ASME
Paper No. GT2017-63936.10.1115/GT2017-63936
50.
Bodony
,
D. J.
,
2006
, “
Analysis of Sponge Zones for Computational Fluid Mechanics
,”
J. Comput. Phys.
,
212
(
2
), pp.
681
702
.10.1016/j.jcp.2005.07.014
51.
Subramanian
,
H. G.
,
Manoharan
,
K.
, and
Hemchandra
,
S.
,
2019
, “
Influence of Nonaxisymmetric Confinement on the Hydrodynamic Stability of Multinozzle Swirl Flows
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021016
.10.1115/1.4041080
52.
Batchelor
,
G.
, and
Gill
,
A.
,
1962
, “
Analysis of the Stability of Axisymmetric Jets
,”
J. Fluid Mech.
,
14
(
04
), pp.
529
551
.10.1017/S0022112062001421
53.
Hecht
,
F.
,
2012
, “
New Development in Freefem++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.10.1515/jnum-2012-0013
54.
Scharnowski
,
S.
, and
Kähler
,
C. J.
,
2016
, “
Estimation and Optimization of Loss-of-Pair Uncertainties Based on PIV Correlation Functions
,”
Exp. Fluids
,
57
(
2
), p.
23
.10.1007/s00348-015-2108-2
55.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2017
, “
Stereo-Particle Image Velocimetry Uncertainty Quantification
,”
Meas. Sci. Technol.
,
28
(
1
), p.
015301
.10.1088/1361-6501/28/1/015301
56.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.10.1017/S0022112007008907
You do not currently have access to this content.