Abstract

The expansion of renewable power plants has transformed the role and operation of gas turbines to a great extent. From the base load operation era, we are moving into a flexible and dynamic engine operation of gas turbines. Advances in computational intelligence have amplified the importance of condition monitoring, diagnostics, and prognostics capabilities in the face of gas turbine operation. Performing diagnostics in transient conditions is beneficial since the gas turbines are now acting as partners of renewables. This article presents a novel diagnostic approach for determining the health of a gas turbine when it works in conjunction with a wind farm in a hybrid power plant. In this article, we propose a model-based diagnostic method without reconstructing component maps according to their degradation. Once the engine model is adapted to its clean condition, it is tuned in real-time to reflect the changes in both the operation and degradation with respect to a benchmark engine model. Time evolving multiple component degradation scenarios are simulated to test the accuracy and efficiency of the proposed method. From a bank of simulated measurements, data trending is performed which facilitates the detection of degradation and provides useful conclusions about the health state of the engine. This diagnostic method is suitable for gas turbines that spend most of their life time in part-load and transient operation and it can be a useful tool for gas turbine operators in planning their assets maintenance in a computational efficient and accurate manner.

References

1.
Benato
,
A.
,
Stoppato
,
A.
, and
Bracco
,
S.
,
2014
, “
Combined Cycle Power Plants: A Comparison Between Two Different Dynamic Models to Evaluate Transient Behaviour and Residual Life
,”
Energy Convers. Manage.
,
87
, pp.
1269
1280
.10.1016/j.enconman.2014.06.017
2.
Bracco
,
S.
, and
Delfino
,
F.
,
2017
, “
A Mathematical Model for the Dynamic Simulation of Low Size Cogeneration Gas Turbines Within Smart Microgrids
,”
Energy
,
119
, pp.
710
723
.10.1016/j.energy.2016.11.033
3.
Tsoutsanis
,
E.
, and
Meskin
,
N.
,
2019
, “
Dynamic Performance Simulation and Control of Gas Turbines Used for Hybrid Gas/Wind Energy Applications
,”
Appl. Therm. Eng.
,
147
, pp.
122
142
.10.1016/j.applthermaleng.2018.09.031
4.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
5.
Saravanamuttoo
,
H.
, and
MacIsaac
,
B.
,
1983
, “
Thermodynamic Model for Pipeline Gas-Turbine Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
875
884
.10.1115/1.3227496
6.
Stamatis
,
A. G.
,
2013
, “
Engine Condition Monitoring and Diagnostics
,”
Progress in Gas Turbine Performance
,
E.
Benini
, ed.,
InTech
,
Rijeka, Croatia
.
7.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2016
, “
A Dynamic Prognosis Scheme for Flexible Operation of Gas Turbines
,”
Appl. Energy
,
164
, pp.
686
701
.10.1016/j.apenergy.2015.11.104
8.
Zhou
,
D.
,
Zhang
,
H.
,
Li
,
Y.-G.
, and
Weng
,
S.
,
2016
, “
A Dynamic Reliability-Centered Maintenance Analysis Method for Natural Gas Compressor Station Based on Diagnostic and Prognostic Technology
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061601
.10.1115/1.4031644
9.
Sun
,
J.
,
Zuo
,
H.
,
Wang
,
W.
, and
Pecht
,
M. G.
,
2012
, “
Application of a State Space Modeling Technique to System Prognostics Based on a Health Index for Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
28
, pp.
585
596
. Interdisciplinary and Integration Aspects in Structural Health Monitoring.10.1016/j.ymssp.2011.09.029
10.
Vatani
,
A.
,
Khorasani
,
K.
, and
Meskin
,
N.
,
2015
, “
Health Monitoring and Degradation Prognostics in Gas Turbine Engines Using Dynamic Neural Networks
,”
ASME
Paper No. GT2015-4401.10.1115/GT2015-44101
11.
Tsoutsanis
,
E.
, and
Meskin
,
N.
,
2017
, “
Derivative-Driven Window-Based Regression Method for Gas Turbine Performance Prognostics
,”
Energy
,
128
, pp.
302
311
.10.1016/j.energy.2017.04.006
12.
Urban
,
L. A.
,
1973
, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,”
J. Aircr.
,
10
(
7
), pp.
400
406
.10.2514/3.60240
13.
Li
,
Y. G.
,
2003
, “
A Gas Turbine Diagnostic Approach With Transient Measurements
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
2
), pp.
169
177
.10.1243/09576500360611317
14.
Volponi
,
A.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
15.
Fentaye
,
A. D.
,
Baheta
,
A. T.
,
Gilani
,
S. I.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities
,”
Aerospace
,
6
(
7
), p.
83
.10.3390/aerospace6070083
16.
Hanachi
,
H.
,
Mechefske
,
C.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2018
, “
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
1340
1363
.10.1109/TR.2018.2822702
17.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
168
175
.10.1115/1.2906157
18.
Daroogheh
,
N.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2019
, “
Ensemble Kalman Filters for State Estimation and Prediction of Two-Time Scale Nonlinear Systems With Application to Gas Turbine Engines
,”
IEEE Trans. Control Syst. Technol.
,
27
(
6
), pp.
2565
2573
.10.1109/TCST.2018.2870044
19.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
,
2003
, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
917
924
.10.1115/1.1419016
20.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
, pp.
106
121
.10.1016/j.neunet.2016.01.003
21.
Vanini
,
Z. S.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2014
, “
Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using Autoassociative Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091603
.10.1115/1.4027215
22.
Daroogheh
,
N.
,
Baniamerian
,
A.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2017
, “
Prognosis and Health Monitoring of Nonlinear Systems Using a Hybrid Scheme Through Integration of Pfs and Neural Networks
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
8
), pp.
1990
2004
.10.1109/TSMC.2016.2597272
23.
Sampath
,
S.
,
Li
,
Y. G.
,
Ogaji
,
S.
, and
Singh
,
R.
,
2003
, “
Fault Diagnosis of a Two Spool Turbo-Fan Engine Using Transient Data: A Genetic Algorithm Approach
,”
ASME
Paper No. GT2003-38300.10.1115/GT2003-38300
24.
Tsoutsanis
,
E.
,
Li
,
Y.-G.
,
Pilidis
,
P.
, and
Newby
,
M.
,
2017
, “
Non-Linear Model Calibration for Off-Design Performance Prediction of Gas Turbines With Experimental Data
,”
Aeronaut. J.
,
121
(
1245
), pp.
1758
1777
.10.1017/aer.2017.96
25.
Hanachi
,
H.
,
Jie
,
L.
, and
Mechefske
,
C.
,
2018
, “
Multi-Mode Diagnosis of a Gas Turbine Engine Using an Adaptive Neuro-Fuzzy System
,”
Chin. J. Aeronaut.
,
31
(
1
), pp.
1
9
.10.1016/j.cja.2017.11.017
26.
Mohammadi
,
E.
, and
Montazeri-Gh
,
M.
,
2015
, “
A Fuzzy-Based Gas Turbine Fault Detection and Identification System for Full and Part-Load Performance Deterioration
,”
Aerosp. Sci. Technol.
,
46
, pp.
82
93
.10.1016/j.ast.2015.07.002
27.
Asr
,
M. Y.
,
Ettefagh
,
M. M.
,
Hassannejad
,
R.
, and
Razavi
,
S. N.
,
2017
, “
Diagnosis of Combined Faults in Rotary Machinery by Non-Naive Bayesian Approach
,”
Mech. Syst. Signal Process.
,
85
, pp.
56
70
.10.1016/j.ymssp.2016.08.005
28.
Zaidan
,
M. A.
,
Harrison
,
R. F.
,
Mills
,
A. R.
, and
Fleming
,
P. J.
,
2015
, “
Bayesian Hierarchical Models for Aerospace Gas Turbine Engine Prognostics
,”
Expert Syst. Appl.
,
42
(
1
), pp.
539
553
.10.1016/j.eswa.2014.08.007
29.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2015
, “
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), pp.
091201
091212
.10.1115/1.4029710
30.
Kong
,
C.
,
Kho
,
S.
, and
Ki
,
J.
,
2006
, “
Component Map Generation of a Gas Turbine Using Genetic Algorithms
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
92
96
.10.1115/1.2032431
31.
Simon
,
D.
, and
Simon
,
D. L.
,
2006
, “
Kalman Filtering With Inequality Constraints for Turbofan Engine Health Estimation
,”
IEE Proc.Control Theory Appl.
,
153
(
3
), pp.
371
378
.10.1049/ip-cta:20050074
32.
Naderi
,
E.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2012
, “
Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), pp.
319
329
.10.1115/1.4004152
33.
Hamadache
,
M.
, and
Lee
,
D.
,
2017
, “
Principal Component Analysis Based Signal-to-Noise Ratio Improvement for Inchoate Faulty Signals: Application to Ball Bearing Fault Detection
,”
Int. J. Control, Autom. Syst.
,
15
(
2
), pp.
506
517
.10.1007/s12555-015-0196-7
34.
PROOSIS
, 2016, “
Propulsion Object-Oriented Simulation Software
,” PROOSIS, accessed Sept. 14, 2020, http://www.proosis.com/
35.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2014
, “
A Component Map Tuning Method for Performance Prediction and Diagnostics of Gas Turbine Compressors
,”
Appl. Energy
,
135
, pp.
572
585
.10.1016/j.apenergy.2014.08.115
You do not currently have access to this content.