Abstract

Electrified aircraft propulsion (EAP) systems hold potential for the reduction of aircraft fuel burn, emissions, and noise. Currently, NASA and other organizations are actively working to identify and mature technologies necessary to bring EAP designs to reality. This paper specifically focuses on the envisioned control technology challenges associated with EAP designs that include gas turbine technology. Topics discussed include analytical tools for the dynamic modeling and analysis of EAP systems, and control design strategies at the propulsion and component levels. This includes integrated supervisory control facilitating the coordinated operation of turbine and electrical components, control strategies that seek to minimize fuel consumption and lessen the challenges associated with thermal management, and dynamic control to ensure engine operability during system transients. These dynamic control strategies include innovative control approaches that either extract or supply power to engine shafts dependent upon operating phase, which may improve performance and reduced gas turbine engine weight. Finally, a discussion of control architecture design considerations to help alleviate the propulsion/aircraft integration and certification challenges associated with EAP systems is provided.

References

1.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA Paper No. 2017-4701
. 10.2514/6.2017-4701
2.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA Paper No. 2018-4998
. 10.2514/6.2018-4998
3.
Felder
,
J. L.
,
2015
, “
NASA Electric Propulsion System Studies
,”
National Aeronautics and Space Administration Glenn Research Center
,
Cleveland, OH
,
Report No. GRC-E-DAA-TN28410
. https://ntrs.nasa.gov/search.jsp?R=20160009274
4.
National Academies of Sciences, Engineering, and Medicine,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
.
5.
NASA
,
2017
, “
NASA Aeronautics Strategic Implementation Plan 2017 Update
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.NP-2017-01-2352-HQ.
6.
Borer
,
N. K.
,
Derlaga
,
J. M.
,
Deere
,
K. A.
,
Carter
,
M. B.
,
Viken
,
S. A.
,
Patterson
,
M. D.
,
Litherland
,
B. L.
, and
Stoll
,
A. M.
,
2017
, “
Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations
,”
AIAA Paper No. 2017-0209
. 10.2514/6.2017-0209
7.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
AIAA Paper No. 2016-1027
. 10.2514/6.2016-1027
8.
Kim
,
H. D.
,
Felder
,
J. L.
,
Tong
,
M. T.
, and
Armstrong
,
M.
,
2013
, “
Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion
,”
21st International Society for Air Breathing Engines
,
Busan, Korea
, Sept. 9–13, Report No. ISABE-2013-1719.https://ntrs.nasa.gov/search.jsp?R=20140002510
9.
Johnson
,
W.
,
Silva
,
C.
, and
Solis
,
E.
,
2018
, “
Concept Vehicles for VTOL Air Taxi Operations
,”
National Aeronautics and Space Administration Ames Research Center
,
Moffett Field, CA
,
Report No. ARC-E-DAA-TN50731
.https://rotorcraft.arc.nasa.gov/Publications/files/Johnson_2018_TechMx.pdf
10.
Silva
,
C.
,
Johnson
,
W.
,
Antcliff
,
K. R.
, and
Patterson
,
M. D.
,
2018
, “
VTOL Urban Air Mobility Concept Vehicles for Technology Development
,”
AIAA Paper No. 2018-3847
. 10.2514/6.2018-3847
11.
Bruno
,
M.
,
2018
, “
Aerospace Sector Could See Overhaul From Electric Propulsion
,”
Aviation Week & Space Technology
, 180(34), p.
28
.
12.
Warwick
,
G.
, and
Osborne
,
T.
,
2017
, “
Airbus E-Fan X to Pave Way for Electric Regional Aircraft
,”
Aviation Week Intelligence Network
, Dec. 1, accessed Oct. 6, 2019, https://aviationweek.com/future-aerospace/airbus-e-fan-x-pave-way-electric-regional-aircraft
13.
Warick
,
G.
,
2017
, “
Boeing-Backed Zunum's First Aircraft to Be 12-Seat Commuter
,”
Aviation Week & Space Technology
, 179(40), p.
22
.https://aviationweek.com/new-civil-aircraft/boeing-backed-zunum-s-first-aircraft-be-12-seat-commuter
14.
Adibhatla
,
S.
,
Ding
,
J.
,
Garg
,
S.
,
Griffith
,
S.
,
Karnofski
,
K.
,
Payne
,
N.
,
Simon
,
D.
, and
Wood
,
B.
,
2018
, “
Propulsion Control Technology Development Needs to Address NASA Aeronautics Research Mission Goals for Thrusts 3a and 4
,”
AIAA Paper No. 2018-4824
. 10.2514/6.2018-4824
15.
Lytle
,
J.
,
Follen
,
G.
,
Naiman
,
C.
,
Evans
,
A.
,
Veres
,
J.
,
Owen
,
K.
, and
Lopez
,
I.
,
2000
, “
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
,”
National Aeronautics and Space Administration Glenn Research Center
,
Cleveland, OH
, Report No.
NASA/TM-2000-209795
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000120213.pdf
16.
GasTurb GmbH, 2017, “
GasTurb 13 Manual: Design and Off-Design Performance of Gas Turbines,
GasTurb GmbH
,
Aachen, Germany
, accessed Oct. 6, 2019, http://www.gasturb.de/manual.html
17.
Bala
,
A.
,
Sethi
,
V.
,
Lo Gatto
,
E.
,
Pachidis
,
V.
, and
Pilidis
,
P.
, “
PROOSIS—A Collaborative Venture for Gas Turbine Performance Simulation Using an Object Oriented Programming Schema
,”
Proceedings of 18th International Symposium on Air Breathing Engines (ISABE)
,
Beijing, China
, Sept. 2–7,
Paper No. ISABE-2007-1357
. https://www.researchgate.net/profile/Vassilios_Pachidis/publication/253000147_PROOSIS_-_A_Collaborative_Venture_for_Gas_Turbine_Performance_Simulation_using_an_Object_Oriented_Programming_Schema/links/0deec53c8e1c5b70e8000000/PROOSIS-A-Collaborative-Venture-for-Gas-Turbine-Performance-Simulation-using-an-Object-Oriented-Programming-Schema.pdf
18.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T.-H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,”
National Aeronautics and Space Administration Glenn Research Center
,
Cleveland, OH
, Report No.
NASA/TM-2014-216638
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012486.pdf
19.
Armstrong
,
J. B.
, and
Simon
,
D. L.
,
2012
, “
Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications
,” Proceedings of the 2012
Annual Conference of the Prognostics and Health Management Society
,
Minneapolis, MN
, Sept. 23–27, pp.
134
146
. https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2012/phmc_12_115.pdf
20.
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2007
, “
Control of Hybrid Electric Vehicles
,”
IEEE Control Systems Magazine
, 27(2), pp.
60
70
.10.1109/MCS.2007.338280
21.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis and Health Monitoring
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
22.
Culley
,
D. E.
,
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2018
, “
Turbine Electrified Energy Management (TEEM) For Enabling More Efficient Engine Designs
,”
AIAA Paper No. 2018-4798
. 10.2514/6.2018-4798
23.
Bradley
,
M. K.
, and
Droney
,
C. K.
,
2015
, “
Subsonic Ultra Green Aircraft Research: Phase II–Volume II–Hybrid Electric Design Exploration
,”
National Aeronautics and Space Administration Langley Research Center
,
Hampton, VA
, Report No.
NASA/CR–2015-218704
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150017039.pdf
24.
Thomas
,
G. L.
,
Culley
,
D. E.
,
Kratz
,
J. L.
, and
Fisher
,
K. L.
,
2018
, “
Dynamic Analysis of the hFan, a Parallel Hybrid Electric Turbofan Engine
,”
AIAA Paper No. 2018-4797
. 10.2514/6.2018-4797
25.
Provost
,
M. J.
,
2002
, “
The More Electric Aero-Engine: A General Overview From an Engine Manufacturer
,”
International Conference on Power Electronics, Machines and Drives
, Santa Fe, NM, Jun. 4–7, pp.
246
251
.10.1049/cp:20020122
26.
Morioka
,
N.
,
Oyori
,
H.
,
Kakiuchi
,
D.
, and
Ozawa
,
K.
,
2011
, “
More Electric Engine Architecture for Aircraft Engine Application
,”
ASME Paper No. GT2011-46765
. 10.1115/GT2011-46765
27.
Garg
,
S.
,
1993
, “
Robust Integrated Flight/Propulsion Control Design for a STOVL Aircraft Using H-Infinity Control Design Techniques
,”
Automatica
,
29
(
1
), pp.
129
145
.10.1016/0005-1098(93)90177-U
28.
Aouf
,
N.
,
Bates
,
D. G.
,
Postlethwaite
,
I.
, and
Boulet
,
B.
,
2002
, “
Scheduling Schemes for an Integrated Flight and Propulsion Control System
,”
Control Eng. Pract.
,
10
(
7
), pp.
685
696
.10.1016/S0967-0661(02)00028-X
29.
Burken
,
J. J.
, and
Burcham
,
F. W.
,
1997
, “
Flight-Test Results of Propulsion-Only Emergency Control System on MD-11 Airplane
,”
J. Guid., Control, Dyn.
,
20
(
5
), pp.
980
987
.10.2514/2.4143
30.
Papathakis
,
K. V.
,
Kloesel
,
K. J.
,
Lin
,
Y.
,
Clarke
,
S.
,
Ediger
,
J. J.
, and
Ginn
,
S.
,
2016
, “
Design and Development of a 200-kW Turboelectric Distributed Propulsion Testbed
,”
AIAA Paper No. 2016-4611
. 10.2514/6.2016-4611
31.
Dyson
,
R.
, “
NASA Electric Aircraft Testbed (NEAT) Single-Aisle Transport Air Vehicle Hybrid Electric Tail-Cone Thruster Powertrain Configuration and Test Results
,”
AIAA Paper No. 2018-5004
. 10.2514/6.2018-5004
32.
Connolly
,
J.
,
Chapman
,
J.
,
Stalcup
,
E.
,
Chicatelli
,
A.
,
Hunker
,
K.
, and
Thomas
,
G.
,
2018
, “
Modeling and Control Design for a Turboelectric Single Aisle Aircraft Propulsion System
,”
AIAA Paper No. 2018-5010
. 10.2514/6.2018-5010
33.
SAE International
,
2010
, “
Aerospace Recommended Practice: Guidelines for Development of Civil Aircraft and Systems
,”
SAE International
,
Warrendale, PA
, Standard No. ARP4754A.
34.
SAE International
,
1996
, “
Aerospace Recommended Practice: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment
,”
SAE International
,
Warrendale, PA
, Standard No. ARP4761.
35.
RTCA, Inc.
,
2005
, “
Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations
,”
RTCA
,
Washington, DC
, Report No. DO-297.
36.
RTCA, Inc.
,
2000
, “
Design Assurance Guidance for Airborne Electronic Hardware
,”
RTCA
,
Washington, DC
, Report No. DO-254.
37.
RTCA, Inc.
,
2012
, “
Software Considerations in Airborne Systems and Equipment Certification
,”
RTCA
,
Washington, DC
, Report No. DO-178C.
38.
SAE International
,
2018
, “
Aerospace Recommended Practice: Guidelines for Time-Limited-Dispatch (TLD) Analysis for Electronic Engine Control Systems
,”
SAE International
,
Warrendale, PA
, Standard No. ARP5107C.
You do not currently have access to this content.