Dual-fuel (DF) engines offer great fuel flexibility combined with low emissions in gas mode. The main source of energy in this mode is provided by gaseous fuel, while the diesel fuel acts only as an ignition source. For this reason, the reliable autoignition of the pilot fuel is of utmost importance for combustion in DF engines. However, the autoignition of the pilot fuel suffers from low compression temperatures caused by Miller valve timings. These valve timings are applied to increase efficiency and reduce nitrogen oxide (NOx) emissions. Previous studies have investigated the influence of injection parameters and operating conditions on ignition and combustion in DF engines using a unique periodically chargeable combustion cell. Direct light high-speed images and pressure traces clearly revealed the effects of injection parameters and operating conditions on ignition and combustion. However, these measurement techniques are only capable of observing processes after ignition. In order to overcome this drawback, a high-speed shadowgraph technique was applied in this study to examine the processes prior to ignition. Measurements were conducted to investigate the influence of compression temperature and injection pressure on spray formation and ignition. Results showed that the autoignition of diesel pilot fuel strongly depends on the fuel concentration within the spray. The high-speed shadowgraph images revealed that in the case of very low fuel concentration within the pilot spray, only the first stage of the two-stage ignition occurs. This leads to large cycle-to-cycle variations and misfiring. However, it was found that a reduced number of injection holes counteract these effects. The comparison of a diesel injector with ten-holes and a modified injector with five-holes showed shorter ignition delays, more stable ignition and a higher number of ignited sprays on a percentage basis for the five-hole nozzle.

References

1.
MAN Diesel & Turbo SE
,
2016
, Marktprognose Für Marine Und Poweranwendung Von Diesel- Und DF-Motoren Für Eine Motorbaureihe: Quellen: IHS WRS, World Marine, Cruise Fleet Listmodels, DGTW, IESG, pp.
1
2
.
2.
Troberg
,
M.
, and
Delneri
,
D.
,
2010
, “
Roadmap Zur Erfüllung Der Tier-III-Abgasnorm Für Schiffsmotoren
,”
Motortech. Z.
,
71
(
6
), pp.
394
401
.
3.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and
Yamaguchi
,
R.
,
2002
, “
Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,”
SAE
Paper No. 2002-01-2723.
4.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
.
5.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Midkiff
,
K. C.
,
2006
, “
Improving Low Load Combustion, Stability, and Emissions in Pilot-Ignited Natural Gas Engines
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
2
), pp.
229
239
.
6.
Unfug
,
F.
,
2016
, “
Investigation on Dual Fuel Engine Gas Combustion Using Tomographic In-Cylinder Measurement Technique and Simultaneous High Speed OH-Chemiluminescence Visualization
,”
SAE
Paper No. 2016-01-2308.
7.
International Maritime Organization (IMO)
,
2014
, “
The International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto Resolution MEPC 251(66)
,” pp.
10
14
.
8.
Karim
,
G. A.
,
2015
,
Dual-Fuel Diesel Engines
,
CRC Press
,
Boca Raton, FL
.
9.
MAN Marine Engines & Systems
,
2016
, “
MAN 35/44 DF: Dual Fuel Flexibility
,” MAN Marine Engines & Systems,
Augsburg, Germany,
Mar. 1, 2016, http://marine.man.eu/four-stroke/engines/l35-44df/
10.
HdT E. C. P., ed.
,
2017
, “
Analysis and Comparison of the Combustion of a Lean Natural Gas/Air Mixture in a Gas-Engine With Scavenged Pre-Chamber and a Dual-Fuel Engine With Pilot Injection
,” pp.
115
118
.
11.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
700
716
.
12.
Shu
,
J.
,
Fu
,
J.
,
Liu
,
J.
,
Zhang
,
L.
, and
Zhao
,
Z.
,
2018
, “
Experimental and Computational Study on the Effects of Injection Timing on Thermodynamics, Combustion and Emission Characteristics of a Natural Gas (NG)-Diesel Dual Fuel Engine at Low Speed and Low Load
,”
Energy Convers. Manage.
,
160
, pp.
426
438
.
13.
Reitz
,
R. D.
,
2013
, “
Directions in Internal Combustion Engine Research
,”
Combust. Flame
,
160
(
1
), pp.
1
8
.
14.
Mbarawa
,
M.
,
2003
, “
A Correlation for Estimation of Ignition Delay of Dual Fuel Combustion Based on Constant Volume Combustion Vessel Experiments
,”
R&D J.
,
19
, pp.
17
22
.
15.
Grochowina
,
M.
,
Schiffner
,
M.
,
Tartsch
,
S.
, and
Sattelmayer
,
T.
,
2017
, “
Influence of Injection Parameters and Operating Conditions on Ignition and Combustion in Dual-Fuel Engines
,”
ASME
Paper No. ICEF2017-3549.
16.
Eisen
,
S.
,
Ofner
,
B.
, and
Mayinger
,
F.
,
2001
, “
Schnelle Kompressionsmaschine: Eine Alternative Zum Transparentmotor?
,”
MTZ
,
62
, pp.
680
685
.
17.
Eisen
,
S. M.
,
2003
, “
Visualisierung Der Dieselmotorischen Verbrennung in Einer Schnellen Kompressionsmaschine
,” dissertation, Lehrstuhl für Thermodynamik TU München,
Munich, Germany
.
18.
Dorer
,
F. S.
,
2000
, “
Kompressionsmaschine Zur Simulation Von Brennraumvorgängen in Wasserstoff-Großdieselmotoren
,” dissertation, Lehrstuhl für Thermodynamik TU München,
Munich, Germany
.
19.
Prechtl
,
P.
,
2000
, “
Analyse Und Optimierung Der Innermotorischen Prozesse in Einem Wasserstoff-Dieselmotor
,” dissertation, Lehrstuhl für Thermodynamik TU München,
Munich, Germany
.
20.
Heinz
,
C.
,
2011
, “
Untersuchung Eines Vorkammerzündkonzepts Für Großgasmotoren in Einer Hochdruckzelle Mit Repetierender Verbrennung
,” dissertation,
Lehrstuhl fuer Thermodynamik
, München, Germany.
21.
Kammerstätter
,
S.
,
2012
, “
Verbrennungsablauf Und Schadstoffbildung in Erdgas-Großmotoren Mit Vorkammerzündung
,” dissertation,
Lehrstuhl fuer Thermodynamik
, München, Germany.
22.
Kammerstätter
,
S.
,
Sattelmayer
,
T.
, and
Sunday
,
2012
, “
Influence of Prechamber-Geometry and Operating-Parameters on Cycle-to-Cycle Variations in Lean Large-Bore Natural Gas Engines
,”
ASME
Paper No. ICES2012-81180.
23.
Heinz
,
C.
,
Kammerstätter
,
S.
, and
Sattelmayer
,
T.
,
2012
, “
Vorkammerkonzepte Für Stationär Betriebene Grossgasmotoren
,”
MTZ
,
1
, pp.
76
81
.
24.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1990
, “
Structures of Fuel Sprays in Diesel Engines
,”
SAE
Paper No. 900475.
25.
Bargende
,
M.
,
2001
, “
Kraftfahrwesen Und Verbrennungsmotoren
,”
Fourth Internationales Stuttgarter Symposium
, Renningen, Germany, Feb. 20–22, pp.
114
115
.
26.
Schiffner
,
M.
,
Grochowina
,
M.
, and
Sattelmayer
,
T.
,
2017
, “
Development of a Numerical Model for Ignition Phenomena in a Micro Pilot Ignited Dual Fuel Engine With External Mixture Formation
,”
ASME
Paper No. ICEF2017-3548.
27.
Dronniou
,
N.
,
Kashdan
,
J.
,
Lecointe
,
B.
,
Sauve
,
K.
, and
Soleri
,
D.
,
2014
, “
Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions
,”
SAE Int. J. Engines
,
7
(
2
), pp.
873
887
.
28.
Arrhenius
,
S.
,
1889
, “
Über Die Dissociationswärme Und Den Einfluss Der Temperatur Auf Den Dissociationsgrad Der Elektrolyte
,”
Z. Phys. Chem.
,
4
(
1
), pp.
1
10
.
29.
Eyring
,
H.
,
1935
, “
The Activated Complex in Chemical Reactions
,”
J. Chem. Phys.
,
3
(
2
), pp.
107
115
.
30.
Grochowina
,
M.
,
Schiffner
,
M.
,
Tartsch
,
S.
, and
Sattelmayer
,
T.
,
2018
, “
Influence of Injection Parameters and Operating Conditions on Ignition and Combustion in Dual-Fuel Engines
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102809
.
You do not currently have access to this content.