Degradation modeling and prediction of remaining useful life (RUL) are crucial to prognostics and health management of aircraft engines. While model-based methods have been introduced to predict the RUL of aircraft engines, little research has been reported on estimating the RUL of aircraft engines using novel data-driven predictive modeling methods. The objective of this study is to introduce an ensemble learning-based prognostic approach to modeling an exponential degradation process due to wear as well as predicting the RUL of aircraft engines. The ensemble learning algorithm combines multiple base learners, including random forests (RFs), classification and regression tree (CART), recurrent neural networks (RNN), autoregressive (AR) model, adaptive network-based fuzzy inference system (ANFIS), relevance vector machine (RVM), and elastic net (EN), to achieve better predictive performance. The particle swarm optimization (PSO) and sequential quadratic optimization (SQP) methods are used to determine optimum weights that are assigned to the base learners. The predictive model trained by the ensemble learning algorithm is demonstrated on the data generated by the commercial modular aero-propulsion system simulation (C-MAPSS) tool. Experimental results have shown that the ensemble learning algorithm predicts the RUL of the aircraft engines with considerable robustness as well as outperforms other prognostic methods reported in the literature.

References

1.
Lee
,
S.
,
Ma
,
Y.-S.
,
Thimm
,
G.
, and
Verstraeten
,
J.
,
2008
, “
Product Lifecycle Management in Aviation Maintenance, Repair and Overhaul
,”
Comput. Ind.
,
59
(
2–3
), pp.
296
303
.
2.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
3.
Li
,
Z.
,
Wu
,
D.
,
Hu
,
C.
, and
Terpenny
,
J.
,
2017
, “
An Ensemble Learning-Based Prognostic Approach With Degradation-Dependent Weights for Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
(in press).
4.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
, 2008, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
International Conference on Prognostics and Health Management (PHM)
, Denver, CO, Oct. 6–9, pp.
1
9
.
5.
Schwabacher
,
M.
, and
Goebel
,
K.
, 2018, “
A Survey of Artificial Intelligence for Prognostics
,”
AAAI Fall Symposium
, Arlington, VA, Oct. 18–20, pp.
107
114
.
6.
Wang
,
P.
, and
Gao
,
R. X.
,
2016
, “
Markov Nonlinear System Estimation for Engine Performance Tracking
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
091201
.
7.
Mosallam
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2016
, “
Data-Driven Prognostic Method Based on Bayesian Approaches for Direct Remaining Useful Life Prediction
,”
J. Intell. Manuf.
,
27
(
5
), pp.
1037
1048
.
8.
Liu
,
K.
, and
Huang
,
S.
,
2016
, “
Integration of Data Fusion Methodology and Degradation Modeling Process to Improve Prognostics
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
344
354
.
9.
Nieto
,
P. G.
,
Garcia-Gonzalo
,
E.
,
Lasheras
,
F. S.
, and
de Cos Juez
,
F. J.
,
2015
, “
Hybrid PSO–SVM-Based Method for Forecasting of the Remaining Useful Life for Aircraft Engines and Evaluation of Its Reliability
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
219
231
.
10.
Khelif
,
R.
,
Chebel-Morello
,
B.
,
Malinowski
,
S.
,
Laajili
,
E.
,
Fnaiech
,
F.
, and
Zerhouni
,
N.
,
2017
, “
Direct Remaining Useful Life Estimation Based on Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2276
2285
.
11.
Yu
,
J.
,
2017
, “
Aircraft Engine Health Prognostics Based on Logistic Regression With Penalization Regularization and State-Space-Based Degradation Framework
,”
Aerosp. Sci. Technol.
,
68
, pp.
345
361
.
12.
Hu
,
C.
,
Youn
,
B. D.
,
Wang
,
P.
, and
Yoon
,
J. T.
,
2012
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Reliab. Eng. Syst. Saf.
,
103
, pp.
120
135
.
13.
Ramasso
,
E.
, and
Gouriveau
,
R.
,
2014
, “
Remaining Useful Life Estimation by Classification of Predictions Based on a Neuro-Fuzzy System and Theory of Belief Functions
,”
IEEE Trans. Reliab.
,
63
(
2
), pp.
555
566
.
14.
Chen
,
H.
,
2011
, “
A Multiple Model Prediction Algorithm for CNC Machine Wear PHM
,”
Int. J. Prognostics Health Manage.
,
2
, p.
129
.https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2010/ijPHM_11_011.pdf
15.
Goebel
,
K.
,
Eklund
,
N.
, and
Bonanni
,
P.
,
2006
, “
Fusing Competing Prediction Algorithms for Prognostics
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 4–11, p.
10
.
16.
Kennedy
,
J.
,
2011
, “
Particle Swarm Optimization
,”
Encyclopedia of Machine Learning
,
Springer
, Boston, MA, pp.
760
766
.
17.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
18.
Prasad, A. M., Iverson, L. R., and Liaw, A., 2006, “
Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction
,”
Ecosystems
,
9
(2), pp. 181–199.https://doi.org/10.1007/s10021-005-0054-1
19.
Loh
,
W. Y.
,
2011
, “
Classification and Regression Trees
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
,
1
(
1
), pp.
14
23
.
20.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
21.
Čerňanský
,
M.
,
Makula
,
M.
, and
Beňušková
,
Ľ.
,
2007
, “
Organization of the State Space of a Simple Recurrent Network before and After Training on Recursive Linguistic Structures
,”
Neural Networks
,
20
(
2
), pp.
236
244
.
22.
Akaike
,
H.
,
1969
, “
Fitting Autoregressive Models for Prediction
,”
Ann. Institute Stat. Math.
,
21
(
1
), pp.
243
247
.
23.
Jang
,
J.-S.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst., Man, Cybern.
,
23
(
3
), pp.
665
685
.
24.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.
25.
Zou
,
H.
, and
Hastie
,
T.
,
2005
, “
Regularization and Variable Selection Via the Elastic Net
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodology)
,
67
(
2
), pp.
301
320
.
26.
Fang
,
X.
,
Paynabar
,
K.
, and
Gebraeel
,
N.
,
2017
, “
Multistream Sensor Fusion-Based Prognostics Model for Systems With Single Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
159
, pp.
322
331
.
27.
Yan
,
H.
,
Liu
,
K.
,
Zhang
,
X.
, and
Shi
,
J.
,
2016
, “
Multiple Sensor Data Fusion for Degradation Modeling and Prognostics Under Multiple Operational Conditions
,”
IEEE Trans. Reliab.
,
65
(
3
), pp.
1416
1426
.
28.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Sequential Quadratic Programming
,
Springer
, New York.
29.
Babu
,
G. S.
,
Zhao
,
P.
, and
Li
,
X.-L.
, “
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
,”
Database Systems for Advanced Applications
(Lecture Notes in Computer Science, Vol. 9642), S. Navathe, W. Wu, S. Shekhar, X. Du, X. Wang, and H. Xiong, eds., Springer, Cham, Switzerland, pp.
214
228
.
30.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A.
, and
Tan
,
K. C.
,
2017
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
10
), pp.
2306
2318
.
31.
Malinowski
,
S.
,
Chebel-Morello
,
B.
, and
Zerhouni
,
N.
,
2015
, “
Remaining Useful Life Estimation Based on Discriminating Shapelet Extraction
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
279
288
.
32.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
You do not currently have access to this content.