We developed and successfully applied a direct simulation Monte Carlo (MC) scheme to quantify the risk of fracture for heavy-duty rotors commonly used in the energy sector. The developed probabilistic fracture mechanics (FM), high-performance computing methodology, and code ProbFM routinely assess relevant modes of operation for a component by performing billions of individual FM simulations. The methodology can be used for new design and life optimization of components, as well as for the risk of failure RoF quantification of in service rotors and their requalifications in conjunction with nondestructive examination techniques, such as ultrasonic testing (UT). The developed probabilistic scheme integrates material data, UT information, duty-cycle data, and finite element analysis (FEA) in order to determine the RoF. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy-duty rotating equipment.

References

1.
Zimmer
,
A.
,
Vrana
,
J.
,
Meiser
,
J.
,
Maximini
,
W.
, and
Blaes
,
N.
,
2010
, “
Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Last Decades
,”
Review of Quantitative Nondestructive Evaluation
, Vol.
29
, D. O. Thompson and D. E. Chimenti, eds.,
American Institute of Physics, College Park, MD
, pp.
1631
1638
.
2.
U.S. Department of Transportation Federal Aviation Administration,
2001
, “AC 33.14-1—Damage Tolerance for High Energy Turbine Rotors,” U.S. Department of Transportation Federal Aviation Administration, Washington, DC, accessed Dec. 1, 2017, https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22920
3.
U.S. Department of Transportation Federal Aviation Administration,
2009
, “AC 33.70-2—Damage Tolerance of Hole Features in High Energy Turbine Rotors,” U.S. Department of Transportation Federal Aviation Administration, Washington, DC, accessed Dec. 1, 2017, https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2033.70-2.pdf
4.
U.S. Nuclear Regulatory Commission,
2007
, “Standard Review Plan, 3.5.1.3 Turbine Missiles,” U.S. Nuclear Regulatory Commission, Rockville, MD, accessed Dec. 1, 2017, https://www.nrc.gov/docs/ML0636/ML063600395.pdf
5.
McClung
,
R. C.
,
Lee
,
Y.-D.
,
Enright
,
M. P.
, and
Liang
,
W.
,
2014
, “
New Methods for Automated Fatigue Crack Growth and Reliability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062101
.
6.
Enright
,
M. P.
, and
McClung
,
R. C.
,
2011
, “
A Probabilistic Framework for Gas Turbine Engine Materials With Multiple Types of Anomalies
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082502
.
7.
Enright
,
M. P.
,
McClung
,
R. C.
,
Liang
,
W.
,
Lee
,
Y.-D.
,
Moody
,
J. P.
, and
Fitch
,
S.
,
2012
, “A Tool for Probabilistic Damage Tolerance of Hole Features in Turbine Engine Rotors,”
ASME
Paper No. GT2012-69968.
8.
Enright
,
M. P.
,
Moody
,
J. P.
, and
Sobotka
,
J. C.
,
2016
, “Optimal Automated Fracture Risk Assessment of 3D Gas Turbine Engine Components,”
ASME
Paper No. GT2016-58091.
9.
Amann
,
C.
,
Gravett
,
P.
, and
Kadau
,
K.
,
2016
, “Method and System for Probabilistic Fatigue Crack Life Estimation,” U.S. Patent No.
9,280,620
.https://www.google.com/patents/US20140107948
10.
Kadau
,
K.
,
Ross
,
C.
,
Patel
,
C.
, and
Amann
,
C.
,
2015
, “Method for Analysis of 3D Features Using a 2D Probabilistic Analysis,” U.S. Patent No.
14,314,159
.https://www.google.com/patents/WO2015200158A1?cl=en
11.
Amann
,
C.
, and
Kadau
,
K.
,
2016
, “
Numerically Efficient Modified Runge-Kutta Solver for Fatigue Crack Growth Analysis
,”
Eng. Fract. Mech.
,
161
, pp.
55
62
.
12.
Annis
,
C.
,
2004
, “
Probabilistic Life Prediction Isn't as Easy as It Looks
,”
J. ASTM Int.
,
1
(2), pp. 1–
13
.
13.
Schmitz
,
S.
,
Seibel
,
T.
,
Beck
,
T.
,
Rollmann
,
R.
,
Krause
,
R.
, and
Gottschalk
,
H.
,
2013
, “
A Probabilistic Model for LCF
,”
Comput. Mater. Sci.
,
79
, pp.
584
590
.
14.
Schmitz
,
S.
,
Gottschalk
,
H.
,
Rollmann
,
G.
, and
Krause
,
R.
,
2013
, “
Risk Estimation for LCF Crack Initiation
,”
ASME
Paper No. GT2013-94899.
15.
Gumbsch
,
P.
,
Riedle
,
J.
,
Hartmaier
,
A.
, and
Fischmeister
,
H. F.
,
1998
, “
Controlling Factors for the Brittle-to-Ductile Transition in Tungsten Single Crystals
,”
Science
,
282
(5392), pp.
1293
1295
.
16.
Kadau
,
K.
,
Germann
,
T. C.
,
Lomdahl
,
P. S.
, and
Holian
,
B. L.
,
2002
, “
Microscopic View of Structural Phase Transitions Induced by Shock Waves
,”
Science
,
296
(5573), pp.
1681
1684
.
17.
Janssen
,
M.
,
Zuidema
,
J.
, and
Wanhill
,
R. J. H.
,
2006
,
Fracture Mechanics
, 2nd ed.,
VSSD
, Delft, The Netherlands.
18.
Irwin
,
G. R.
,
1968
, “
Linear Fracture Mechanics, Fracture Transition, and Fracture Control
,”
Eng. Fract. Mech.
,
1
(2), pp.
241
257
.
19.
Varfolomeev
,
I.
,
Ivanov
,
D.
, and
Hodulak
,
L.
,
2008
, “IWM VERB Failure Assessment Software 8.0 Compendium of Stress Intensity Factor and Limit Load Solutions,”
Fraunhofer IWM
, Freiburg, Germany.
20.
Varfolomeev
,
I.
,
Ivanov
,
D.
, and
Hodulak
,
L.
,
2008
, “IWM VERB Failure Assessment Software 8.0 User' Guide,”
Fraunhofer IWM
, Freiburg, Germany.
21.
Southwest Research Institute
,
2011
, “NASGRO 6.2 Reference Manual,” South West Research Institute, San Antonio, TX.
22.
Wallin
,
K.
,
2011
,
Fracture Toughness of Engineering Materials: Estimation and Application
,
EMAS Publishing
, Warrington, UK.
23.
Vrana
,
J.
,
Zimmer
,
A.
,
Bailey
,
K.
,
Angal
,
R.
,
Zombo
,
P.
,
Büchner
,
U.
,
Buschmann
,
A.
,
Shannon
,
R.
,
Lohmann
,
H.-P.
, and
Heinrich
,
W.
,
2010
, “
Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decade
,”
Rev. Quant. Nondestr. Eval.
,
1211
, pp.
1623
1630
.
24.
Kern
,
T.-U.
,
Ewald
,
J.
, and
Maile
,
K.
,
1998
, “
Evaluation of NDT-Signals for Use in the Fracture Mechanics Safety Analysis
,”
Mater. High Temp.
,
15
(2), pp. 107–110.
25.
Metropolis
,
N.
,
1987
, “
The Beginning of the Monte Carlo Method
,”
Los Alamos Sci.
,
15
, pp.
125
130
.http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
You do not currently have access to this content.