The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.

References

1.
Kanniche
,
M.
, and
Bouallou
,
C.
,
2007
, “
CO2 Capture Study in Advanced Integrated Gasification Combined Cycle
,”
Appl. Therm. Eng.
,
27
(
16
), pp.
2693
2702
.10.1016/j.applthermaleng.2007.04.007
2.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
,
2007
, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-28096.10.1115/GT2007-28096
3.
Zheng
,
L.
, and
Furinsky
,
E.
,
2005
, “
Comparison of Shell, Texaco, BGL and KRW Gasifiers as Part of IGCC Plant Computer Simulations
,”
Energy Convers. Manage.
,
46
(
11–12
), pp.
1767
1779
.10.1016/j.enconman.2004.09.004
4.
Iyer
,
V.
,
Haynea
,
J.
,
May
,
P.
, and
Anand
,
A.
,
2005
, “
Evaluation of Emissions Performance of Existing Combustion Technologies for Syngas Combustion
,”
ASME
Paper No. GT2005-68513.10.1115/GT2005-68513
5.
Wender
,
I.
, 1996, “Reactions of Synthesis Gas,”
Fuel Processing Tech.
,
48
(3), pp.
189
297
.10.1016/S0378-3820(96)01048-X
6.
Shinada
,
O.
,
Yamada
,
A.
, and
Koyama
,
Y.
,
2002
, “
The Development of Advanced Energy Technologies in Japan: IGCC—A Key Technology for the 21st Century
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1221
1233
.10.1016/S0196-8904(02)00009-2
7.
Moore
,
M. J.
,
1997
, “
NOx Emission Control in Gas Turbines for Combined Cycle Gas Turbine Plant
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
1
), pp.
43
52
.10.1243/0957650971536980
8.
Monteiro
,
E.
,
Bellenoue
,
M.
,
Sotton
,
J.
,
Moreira
,
N. A.
, and
Malheiro
,
S.
,
2010
, “
Laminar Burning Velocities and Markstein Numbers of Syngas-Air Mixtures
,”
Fuel
,
89
(
8
), pp.
1985
1991
.10.1016/j.fuel.2009.11.008
9.
Lee
,
M. C.
,
Seo
,
S. B.
,
Chung
,
J. H.
,
Kim
,
S. M.
,
Joo
,
Y. J.
, and
Ahn
,
D. H.
,
2010
, “
Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas
,”
Fuel
,
89
(
7
), pp.
1485
1491
.10.1016/j.fuel.2009.10.004
10.
Ghenai
,
C.
,
2010
, “
Combustion of Syngas Fuel in Gas Turbine Can Combustor
,”
Adv. Mech. Eng.
,
2010
, p.
342357
.10.1155/2010/342357
11.
Dryer
,
F. L.
, and
Chaos
,
M.
,
2008
, “
Ignition of Syngas/Air and Hydrogen/Air Mixtures at Low Temperatures and High Pressures: Experimental Data Interpretation and Kinetic Modeling Implications
,”
Combust. Flame
,
152
(
1–2
), pp.
293
299
.10.1016/j.combustflame.2007.08.005
12.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
, and
Wooldridge
,
M. S.
,
2007
, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications
,”
Proc. Combust. Inst.
,
31
(
II
), pp.
3147
3154
.10.1016/j.proci.2006.08.059
13.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
439
446
.10.1016/j.proci.2006.07.193
14.
Xu
,
G.
,
Tian
,
Y.
,
Song
,
Q.
,
Fang
,
A.
,
Cui
,
Y.
,
Yu
,
B.
, and
Nie
,
C.
,
2006
, “
Flashback Limit and Mechanism of Methane and Syngas Fuel
,”
ASME
Paper No. GT2006-90521.10.1115/GT2006-90521
15.
Natarajan
,
J.
,
Nandula
,
S.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2005
, “
Laminar Flame Speeds of Synthetic Gas Fuel Mixtures
,”
ASME
Paper No. GT2005-68917.10.1115/GT2005-68917
16.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1317
1323
.10.1016/S0082-0784(06)80773-3
17.
Kim
,
Y. S.
,
Lee
,
J. J.
,
Kim
,
T. S.
, and
Sohn
,
J. L.
,
2011
, “
Effects of Syngas Type on the Operation and Performance of a Gas Turbine in Integrated Gasification Combined Cycle
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2262
2271
.10.1016/j.enconman.2011.01.009
18.
He
,
F.
,
Li
,
Z.
,
Liu
,
P.
,
Ma
,
L.
, and
Pistikopoulos
,
E. N.
,
2012
, “
Operation Window and Part-Load Performance Study of a Syngas Fired Gas Turbine
,”
Appl. Energy
,
89
(
1
), pp.
133
141
.10.1016/j.apenergy.2010.11.044
19.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz de Escalona
,
J. M.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2013
, “
Gas and Steam Combined Cycles for Low Calorific Syngas Fuels Utilisation
,”
Appl. Energy
,
101
, pp.
81
92
.10.1016/j.apenergy.2012.02.041
20.
Chacartegui
,
R.
,
Torres
,
M.
,
Sánchez
,
D.
,
Jiménez
,
F.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2011
, “
Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels
,”
Fuel Process. Technol.
,
92
(
2
), pp.
213
220
.10.1016/j.fuproc.2010.03.014
21.
Shih
,
H. Y.
, and
Liu
,
C. R.
,
2009
, “
Combustion Characteristics of a Can Combustor With a Rotating Casing for an Innovative Micro Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
4
), p.
041501
.10.1115/1.3043807
22.
Shih
,
H. Y.
, and
Liu
,
C. R.
,
2011
, “
A Computational Study of Hydrogen Substitution Effects on the Combustion Performance for a Micro Gas Turbine
,”
ASME
Paper No. GT2011-45275.10.1115/GT2011-45275
23.
Shih
,
H. Y.
, and
Liu
,
C. R.
,
2010
, “
Combustion Characteristics and Hydrogen Addition Effects on the Performance of a Can Combustor for a Micro Gas Turbine
,”
ASME
Paper No. GT2011-45275.10.1115/GT2011-45275
24.
Kuo
,
C. R.
,
Wang
,
T. W.
,
Wu
,
J. R.
,
Wen
,
L. C.
,
Hsiung
,
T. P.
, and
Chang
,
C. Y.
,
2003
, “Engine Core Rotor Shaft Structure for Gas Turbine Engine,” U.S. Patent No. US 6637209 B2.
25.
Kuo
,
C. R.
,
Wang
,
T. W.
,
Wu
,
J. R.
,
Wen
,
L. C.
,
Hsiung
,
T. P.
, and
Chang
,
C. Y.
, 2003, “Engine Core Rotor Shaft Structure for Gas Turbine Engine,” R.O.C. Patent No. 201586.
26.
Patankar
,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow (Series in Computation and Physical Processes in Mechanics and Thermal Sciences), Taylor & Francis, London, UK.
27.
Guo
,
Z. M.
,
Zhang
,
H. Q.
,
Chan
,
C. K.
, and
Lin
,
W. Y.
,
2003
, “
Presumed Joint Probability Density Function Model for Turbulent Combustion
,”
Fuel
,
82
(
9
), pp.
1091
1101
.10.1016/S0016-2361(03)00011-5
28.
Faravelli
,
T.
,
Bua
,
L.
,
Frassoldati
,
A.
,
Antifora
,
A.
,
Tognotti
,
L.
, and
Ranzi
,
E.
,
2001
, “
A New Procedure for Predicting NOx Emissions From Furnaces
,”
Comput. Chem. Eng.
,
25
(
4–6
), pp.
613
618
.10.1016/S0098-1354(01)00641-X
29.
Caldeira-Pires
,
A.
,
Heitor
,
M. V.
, and
Carvalho
,
J. A.
, Jr.
,
2000
, “
Characteristics of Nitric Oxide Formation Rates in Turbulent Nonpremixed Jet Flames
,”
Combust. Flame
,
120
(
3
), pp.
383
391
.10.1016/S0010-2180(99)00094-2
30.
De Soete
,
G. G.
,
1975
, “
Overall Reaction Rates of NO and N2 Formation From Fuel Nitrogen
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1093
1102
.10.1016/S0082-0784(75)80374-2
You do not currently have access to this content.