This paper elaborates on the theoretical development of a mathematical approach, targeting the real-time simulation of aero-elasticity for open rotors with slender blades, as employed in the majority of rotorcraft. A Lagrangian approach is formulated for the rapid estimation of natural vibration characteristics of rotor blades with nonuniform structural properties. Modal characteristics obtained from classical vibration analysis methods are utilized as assumed deformation functions. Closed form integral expressions are incorporated, describing the generalized centrifugal forces and moments acting on the blade. The treatment of three-dimensional elastic blade kinematics in the time-domain is thoroughly discussed. In order to ensure robustness and establish applicability in real time, a novel, second-order accurate, finite-difference scheme is utilized for the temporal discretization of elastic blade motion. The developed mathematical approach is coupled with a finite-state induced flow model, an unsteady blade element aerodynamics model, and a dynamic wake distortion model. The combined formulation is implemented in an existing helicopter flight mechanics code. The aero-elastic behavior of a full-scale hingeless helicopter rotor has been investigated. Results are presented in terms of rotor blade resonant frequencies, rotor trim performance, oscillatory structural blade loads, and transient rotor response to control inputs. Extensive comparisons are carried out with wind tunnel (WT) and flight test (FT) measurements found in the open literature as well as with nonreal-time comprehensive analysis methods. It is shown that the proposed approach exhibits good agreement with measured data regarding trim performance and transient rotor response characteristics. Accurate estimation of structural blade loads is demonstrated, in terms of both amplitude and phase, up to the third harmonic component of oscillatory loading. It is shown that the developed model can be utilized for real-time simulation on a modern personal computer. The proposed methodology essentially constitutes an enabling technology for the multidisciplinary design of rotorcraft, when a compromise between simulation fidelity and computational efficiency has to be sought for in the process of model development.
Skip Nav Destination
Article navigation
January 2015
Research-Article
Real-Time Aero-elasticity Simulation of Open Rotors With Slender Blades for the Multidisciplinary Design of Rotorcraft
Ioannis Goulos,
Ioannis Goulos
Centre for Propulsion,
School of Engineering,
e-mail: i.goulos@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: i.goulos@cranfield.ac.uk
Search for other works by this author on:
Vassilios Pachidis
Vassilios Pachidis
Centre for Propulsion,
School of Engineering,
e-mail: v.pachidis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: v.pachidis@cranfield.ac.uk
Search for other works by this author on:
Ioannis Goulos
Centre for Propulsion,
School of Engineering,
e-mail: i.goulos@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: i.goulos@cranfield.ac.uk
Vassilios Pachidis
Centre for Propulsion,
School of Engineering,
e-mail: v.pachidis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: v.pachidis@cranfield.ac.uk
Contributed by the Structures and Dynamics Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 1, 2014; final manuscript received July 2, 2014; published online August 26, 2014. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jan 2015, 137(1): 012503 (12 pages)
Published Online: August 26, 2014
Article history
Received:
July 1, 2014
Revision Received:
July 2, 2014
Citation
Goulos, I., and Pachidis, V. (August 26, 2014). "Real-Time Aero-elasticity Simulation of Open Rotors With Slender Blades for the Multidisciplinary Design of Rotorcraft." ASME. J. Eng. Gas Turbines Power. January 2015; 137(1): 012503. https://doi.org/10.1115/1.4028180
Download citation file:
Get Email Alerts
Cited By
Experimental Characterization of Superheated Ammonia Spray from a Single-hole ECN Spray M Injector
J. Eng. Gas Turbines Power
Data-Driven Approach for Predicting Vibration Response of Bladed Disks With Geometric Mistuning
J. Eng. Gas Turbines Power (October 2025)
Experimental Investigation of Particulate Emissions From an Ammonia-Fueled Internal Combustion Engine
J. Eng. Gas Turbines Power (October 2025)
High-Temperature Industrial-Scale CO2 Heat Pumps: Thermodynamic Analysis and Pilot-Scale Testing
J. Eng. Gas Turbines Power (October 2025)
Related Articles
Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys
J. Eng. Gas Turbines Power (August,2016)
Process Parameter Optimization of a Mobile Robotic Percussive Riveting System With Flexible Joints
J. Comput. Nonlinear Dynam (November,2017)
Progress in Structural Dynamics With Stochastic Parameter Variations: 1987-1998
Appl. Mech. Rev (May,1999)
Generalized Aerodynamic Modeling of Dynamic Wake Curvature for Open Rotors With Slender Blades
J. Turbomach (June,2016)
Related Proceedings Papers
Related Chapters
Development of New Process and Product Monitoring Technologies for the Manufacturing of High Value Alloy Steels for Use in Critical Applications
Bearing and Transmission Steels Technology
Mechanical Construction
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Introduction
Hydraulic Fluids: A Guide to Selection, Test Methods and Use