Hybrid solar micro gas-turbines are a promising technology for supplying controllable low-carbon electricity in off-grid regions. A thermoeconomic model of three different hybrid micro gas-turbine power plant layouts has been developed, allowing their environmental and economic performance to be analyzed. In terms of receiver design, it was shown that the pressure drop is a key criterion. However, for recuperated layouts, the combined pressure drop of the recuperator and receiver is more important. In terms of both electricity costs and carbon emissions, the internally-fired recuperated micro gas-turbine was shown to be the most promising solution of the three configurations evaluated. Compared to competing diesel generators, the electricity costs from hybrid solar units are between 10% and 43% lower, while specific CO2 emissions are reduced by 20–35%.

References

1.
International Energy Agency
,
2010
,
World Energy Outlook 2010: Executive Summary
,
IEA Publications
,
Paris
.
2.
ESMAP
,
2001
,
Best Practice Manual: Promoting Decentralized Electrification Investment
,
The World Bank
,
Washington, DC
.
3.
Strachan
,
N.
, and
Farrell
,
A.
,
2006
, “
Emissions From Distributed vs. Centralized Generation: The Importance of System Performance
,”
Energy Policy
,
34
, pp.
2677
2689
.10.1016/j.enpol.2005.03.015
4.
Buchholz
,
T.
,
Da Silva
,
I.
, and
Furtado
,
J.
,
2012
, “
Electricity From Wood-Fired Gasification in Uganda—A 250 and 10 kW Case Study
,”
Proceedings of the 20th Domestic Use of Energy Conference
,
Cape Peninsula, South Africa
, April 3–4.
5.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
B.
,
2004
, “
ECOSTAR: European Concentrated Solar Thermal Road-Mapping
,” German Aerospace Center, Cologne, Germany, Report No. SES6-CT-2003-502578.
6.
Öberg
,
R.
,
Olsson
,
F.
, and
Pålsson
,
M.
,
2004
, “
Demonstration Stirling Engine Based Micro-CHP With Ultra-Low Emissions
,” Svenskt Gastekniskt Center, Malmö, Report No. SGC 144.
7.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Solar Energy
,
80
, pp.
1225
1230
.10.1016/j.solener.2005.04.020
8.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
,
Jedamski
,
J.
, and
Uhlig
,
R.
,
2008
, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,” 14th Biennial CSP SolarPACES Symposium, Las Vegas, NV, March 4–7.
9.
Augsten
,
E.
,
2009
, “
Make the Desert Bloom
,”
Sun Wind Energy
, Sept., pp.
52
55
.
10.
Avila-Marin
,
A.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Solar Energy
,
85
, pp.
891
910
. 10.1016/j.solener.2011.02.002
11.
Wright
,
S.
,
Fuller
,
R.
,
Lipinski
,
R.
,
Nichols
,
K.
, and
Brown
,
N.
,
2005
, “
Operational Results of a Closed Brayton Cycle Test-Loop
,”
AIP Conf. Proc.
,
746
, pp.
699
746
.10.1063/1.1867189
12.
Malmquist
,
A.
,
2012
, private communication.
13.
Kautz
,
M.
, and
Hansen
,
U.
,
2007
, “
The Externally-Fired Gas-Turbine for Decentralized use of Biomass
,”
Appl. Energy
,
84
, pp.
795
805
.10.1016/j.apenergy.2007.01.010
14.
International Organization for Standardization
,
2009
, “
Gas Turbines—Acceptance Tests
,” ISO 2314:2009, Geneva, Switzerland.
15.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
,
2002
, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
124
(
1
), pp.
2
9
.10.1115/1.1445444
16.
Aichmayer
,
L.
,
Spelling
,
J.
,
Wang
,
W.
, and
Laumert
,
B.
,
2012
, “
Design and Analysis of a Solar Receiver for Micro Gas Turbine Based Solar Dish Systems
,”
Proceedings of the International SolarPACES Conference
,
Marrakech, Morocco
, September 11–14.
17.
Staine
F.
,
1994
, “
Intégration Energétique des Procédés Industriels par la Méthode du Pincement étendue aux facteurs Exergétiques
,” Ph.D. thesis, Ecole Polytechnique Fédérale, Lausanne, Switzerland.
18.
Karni
,
J.
,
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Fiterman
,
A.
, and
Sagie
,
D.
,
1997
, “
The DIAPR: A High-Pressure, High-Temperature Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
119
, pp.
74
78
.10.1115/1.2871853
19.
Karni
,
J.
,
Kribus
,
A.
,
Ostraich
,
B.
, and
Kochavi
,
E.
,
1998
, “
A High-Pressure Window for Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
101
107
.10.1115/1.2888051
20.
Pelster
,
S.
,
1998
, “
Environomic Modeling and Optimization of Advanced Combined Cycle Cogeneration Power Plants Including CO2 Separation Options
,” Ph.D. thesis, Ecole Polytechnique Fédérale, Lausanne, Switzerland.
21.
Kistler
,
B.
,
1986
,
A User's Manual for DELSOL3
,
Sandia National Laboratories
,
Albuquerque, NM
.
22.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
J.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
, pp.
1231
1240
.10.1016/j.solener.2005.09.007
23.
Sicilia
,
M.
, and
Keppler
,
J.
,
2010
,
Projected Costs of Generating Electricity
,
International Energy Agency
,
Paris
.
24.
Sargent
and
Lundy
, LLC,
2003
, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” Report No. NREL/SR-550-34440.
25.
International Energy Agency
,
2012
,
End-Use Petroleum Product Prices and Average Crude Oil Import Costs November 2012
,
IEA Publications
,
Paris
.
26.
Bhargava
,
R.
,
Bianchi
,
M.
,
de Pascale
,
A.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
,
2007
, “
Gas Turbine Based Power Cycles—A State-of-the-Art Review
,”
Proceedings of the Power Engineering Conference (ICOPE-2007)
,
Hangzhou
, China, October 23–27.
27.
Borbley
,
A.
, and
Kreider
,
J.
, eds.,
2001
,
Distributed Generation
,
CRC Press
,
Boca Raton, FL
.
28.
Bohn
,
D.
,
2005
, “
Micro Gas Turbine and Fuel Cell—A Hybrid Energy Conversion System With High Potential
,” Report No. RTO-EN-AVT-131.
You do not currently have access to this content.