In this paper, a horizontal flexible rotor supported on two deep groove ball bearings is theoretically investigated for instability and chaos. The system is biperiodically excited. The two sources of excitation are rotating imbalance and self excitation due to varying compliance effect of ball bearing. A generalized Timoshenko beam finite element (FE) formulation, which can be used for both flexible and rigid rotor systems with equal effectiveness, is developed. The novel scheme proposed in the literature to analyze quasiperiodic response is coupled with the existing nonautonomous shooting method and is thus modified; the shooting method is used to obtain a steady state quasiperiodic solution. The eigenvalues of monodromy matrix provide information about stability and nature of bifurcation of the quasiperiodic solution. The maximum value of the Lyapunov exponent is used for quantitative measure of chaos in the dynamic response. The effect of three parameters, viz., rotating unbalance, bearing clearance, and rotor flexibility, on an unstable and chaotic behavior of a horizontal flexible rotor is studied. Interactive effects between the three parameters are examined in detail in respect of rotor system instability and chaos, and finally the range of parameters is established for the same.

1.
Perret
,
H.
, 1950, “
Dlastiche Spielschwingungen Konstant Belaster Walzlger
,”
Werkstatt und Betrieb
,
3
, pp.
354
358
.
2.
Sunnersjo
,
C. S.
, 1978, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
0022-460X,
58
(
3
), pp.
363
373
.
3.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
, 1985, “
On the Radial Vibrations of Ball Bearings (Computer Simulation)
,”
Bull. JSME
0021-3764,
28
, pp.
899
904
.
4.
Mevel
,
B.
, and
Guyader
,
J. L.
, 1993, “
Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
0022-460X,
162
, pp.
471
487
.
5.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
, 2000, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
0022-460X,
238
(
5
), pp.
723
756
.
6.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
, 2000, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
0022-460X,
238
(
5
), pp.
757
79
.
7.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
, 2002, “
Experimental Study of a Rotor Supported by Deep Groove Ball Bearing
,”
Int. J. Rotating Mach.
1023-621X,
8
(
4
), pp.
243
258
.
8.
Changqing
,
B.
, and
Qingyu
,
X.
, 2006, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
23
48
.
9.
Harsha
,
S. P.
, 2006, “
Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings
,”
Nonlinear Dyn.
0924-090X,
1
, pp.
65
100
.
10.
Lee
,
D. -S.
, and
Choi
,
D. -H.
, 1997, “
A Dynamic Analysis of a Flexible Rotor in Ball Bearing With Nonlinear Stiffness Characteristics
,”
Int. J. Rotating Mach.
1023-621X,
3
(
2
), pp.
73
80
.
11.
El-Saeidy
,
F. M. A.
, 1998, “
Finite Element Modeling of Rotor-Shaft-Rolling Bearing Systems With Consideration of Bearing Nonlinearities
,”
J. Vib. Control
1077-5463,
4
, pp.
541
602
.
12.
Reddy
,
J. N.
, 1997, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
, pp.
113
132
.
13.
Nayfeh
,
A. H.
, and
Balachandram
,
B.
, 1995,
Applied Non Linear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
14.
Choi
,
S. -K.
, and
Noah
,
S. T.
, 1992, “
Response and Stability Analysis of Piecewise Linear Oscillations Under Multi-Forcing Frequencies
,”
Nonlinear Dyn.
0924-090X,
3
, pp.
105
121
.
15.
Ku
,
D. M.
, 1998, “
Finite Element Analysis of Natural Whirl Speeds for Rotor-Bearing Systems With Internal Damping
,”
Mech. Syst. Signal Process.
0888-3270,
12
(
5
), pp.
599
610
.
16.
Jia
,
L.
,
Guolai
,
Y.
,
Hyounkyum
,
O.
, and
Luo
,
A. K. J.
, 2005, “
Computing Lyapunov Exponents of Continuous Dynamical Systems: Method of Lyapunov Vectors
,”
Chaos, Solitons Fractals
0960-0779,
23
, pp.
1879
1892
.
17.
Hashish
,
E.
, and
Sankar
,
T. S.
, 1984, “
Finite Element and Modal Analysis of Rotor-Bearing System Under Stochastic Loading Conditions
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
80
89
.
18.
Lund
,
J. W.
, 1974, “
Modal Response of a Flexible Rotor in Fluid Film Bearings
,”
ASME J. Eng. Ind.
0022-0817,
96
(
1
), pp.
525
553
.
19.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
,
D. K.
, 2008, “
Nonlinear Vibration Analysis of an Unbalanced Flexible Rotor Supported By Ball Bearings With Radial Internal Clearance
,”
International Conference, ASME Turbo-Expo-2008
.
20.
Harris
,
T. A.
, 1984,
Roller Bearing Analysis
,
Wiley
,
New York
.
21.
Kramer
,
E.
, 1993,
Dynamics of Rotors and Foundations
,
Springer-Verlag
,
New York
.
22.
Tamura
,
H.
, and
Tsuda
,
Y.
, 1985, “
On the Static Running Accuracy of Ball Bearings
,”
Bull. JSME
0021-3764,
28
, pp.
1240
1246
.
23.
Gargiulo
,
E. P.
, 1980, “
A Simple Way to Estimate Bearing Stiffness
,”
Mach. Des.
0024-9114,
52
, pp.
107
110
.
24.
Tamma
,
K. K.
,
Kanapady
,
R.
,
Zou
,
X.
, and
Sha
,
D.
, 2000, “
Recent Advances in Computational Structural Dynamics Algorithms
,”
Proceedings of the Seventh International Conference Structural Dynamics: Recent Advances
,
N. S.
Ferguson
,
H. F.
Wolfe
,
M. A.
Ferman
, and
S. A.
Rizzi
, eds., pp.
731
755
.
25.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
New Delhi
.
26.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
J.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
You do not currently have access to this content.