In the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with computational fluid dynamics, finite element calculations, and low-order network models, the burner’s performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong nonlinear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these nonlinear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The nonlinear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well.

1.
Lieuwen
,
T. C.
and
Yang
,
V.
, eds., 2005, “
Combustion Instabilities in Gas Turbine Engines
,”
Progess in Astronautics and Aeronautics
,
AIAA, Inc.
,
Reston, VA
.
2.
Rea
,
S.
,
James
,
S.
,
Goy
,
C.
, and
Colechin
,
M. J. F.
, 2003, “
On-Line Combustion Monitoring on Dry Low NOx Industrial Gas Turbines
,”
Meas. Sci. Technol.
0957-0233,
14
(
7
), pp.
1123
1130
.
3.
Sewell
,
J.
,
Sobieski
,
P.
, and
Beers
,
C.
, 2004, “
Application of Continuous Combustion Dynamics Monitoring on Large Industrial Gas Turbines
,”
ASME
Paper No. GT2004-54310.
4.
Mongia
,
H.
,
Held
,
T.
,
Hsiao
,
G.
, and
Pandalai
,
R.
, 2003, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
822
829
.
5.
Streb
,
H.
,
Prade
,
B.
,
Hahner
,
T.
, and
Hoffmann
,
S.
, 2001, “
Advanced Burner Development for the VX4.3A Gas Turbines
,”
ASME
Paper No. 2001-GT-0077.
6.
Martin
,
C. E.
,
Benoit
,
L.
,
Sommerer
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2006, “
Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor
,”
AIAA J.
0001-1452,
44
(
4
), pp.
741
750
.
7.
Richards
,
G. A.
,
Thornton
,
J. D.
,
Robey
,
E. H.
, and
Arellano
,
L.
, 2007, “
Open-Loop Active Control of Combustion Dynamics on a Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
1
), pp.
38
48
.
8.
Jones
,
C. M.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 1999, “
Closed-Loop Active Control of Combustion Instabilities Using Subharmonic Secondary Fuel Injection
,”
J. Propul. Power
0748-4658,
15
(
4
), pp.
584
590
.
9.
Poinsot
,
T. J.
,
Trouvé
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 1987, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
0022-1120,
177
, pp.
265
292
.
10.
Polifke
,
W.
, 2004,
Combustion Instabilities
,
Proceedings of the VKI Lecture Series Advances in Acoustics and Applications
, Brussels, Belgium.
11.
Dowling
,
A. P.
, and
Stow
,
S. R.
, 2003, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
751
764
.
12.
Krebs
,
W.
,
Bethke
,
S.
,
Lepers
,
J.
,
Flohr
,
P.
,
Johnson
,
C.
, and
Sattinger
,
S.
, 2005, “
Thermoacoustic Design Tools and Passive Control: Siemens Power Generation Approaches
,”
Combustion Instabilities in Gas Turbine Engines
,
T. C.
Lieuwen
and
V.
Yang
, eds.,
AIAA Inc.
,
Reston, VA
, pp.
89
112
.
13.
Bethke
,
S.
,
Wever
,
U.
, and
Krebs
,
W.
, 2005, “
Stability Analysis of Gas-Turbine Combustion Chamber
,” AIAA Paper No. 2005-2831.
14.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
, 2008, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.
15.
Zajadatz
,
M.
,
Lachner
,
R.
,
Bernero
,
S.
,
Motz
,
C.
, and
Flohr
,
P.
, 2007, “
Development and Design of Alstom’s Staged Fuel Gas Injection EV Burner for NOx
Reduction,”
ASME
Paper No. GT2007-27730.
16.
Brogan
,
T.
(Pratt & Whitney, East Hartford, CT), private communication.
17.
Cazalens
,
M.
,
Roux
,
S.
,
Sensiau
,
C.
, and
Poinsot
,
T.
, 2008, “
Combustion Instability Problems Analysis for High-Pressure Jet Engine Cores
,”
J. Propul. Power
0748-4658,
24
(
4
), pp.
770
778
.
18.
Torres
,
H.
,
Lieuwen
,
T. C.
,
Johnson
,
C.
,
Daniel
,
B. R.
, and
Zinn
,
B. T.
, 1999, “
Experimental Investigation of Combustion Instabilities in a Gas Turbine Combustor Simulator
,” AIAA Paper No. 99-0712.
19.
Zinn
,
B.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
, 2002, “
Active Control of Combustion Instabilities in Low NOx
Gas Turbines,” Technical Report, School of Aerospace Engineering, Georgia Tech.
20.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2008, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
0022-460X,
318
(
4–5
), pp.
678
701
.
21.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2009, “
Assessment of Different Actuator Concepts for Acoustic Boundary Control of a Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
2
), p.
021502
.
22.
Guicking
,
D.
, and
Karcher
,
K.
, 1984, “
Active Impedance Control for One-Dimensional Sound
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
393
396
.
23.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, “
Comparison of Linear Stability Analysis With Experiments by Actively Tuning the Acoustic Boundary Conditions of a Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795, in press.
24.
Lacarelle
,
A.
,
Luchtenburg
,
D. M.
,
Bothien
,
M. R.
,
Noack
,
B. R.
, and
Paschereit
,
C. O.
, 2008, “
A Combination of Image Post-Processing Tools to Identify Coherent Structures of Premixed Flames
,”
Proceedings of the Second International Conference on Jets, Wakes and Separated Flows
, Berlin, Germany.
25.
Bechert
,
D. W.
, 1980, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
0022-460X,
70
(
3
), pp.
389
405
.
26.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 2000, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
0001-1452,
38
(
6
), pp.
1025
1034
.
27.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
, 2007, “
Phase-Shift Control of Combustion Instability Using (Combined) Secondary Fuel Injection and Acoustic Forcing
,”
Active Flow Control, Notes on Numerical Fluid Mechanics and Multidisciplinary Design
,
R.
King
, ed.,
Springer-Verlag
,
Berlin
, Vol.
95
, pp.
408
421
.
28.
Bothien
,
M. R.
,
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2007, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
5
), pp.
657
668
.
29.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2004, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.
30.
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
, 2002, “
Proportional Control of Combustion Instabilities in a Simulated Gas-Turbine Combustor
,”
J. Propul. Power
0748-4658,
18
(
6
), pp.
1298
1304
.
31.
Gustavsen
,
B.
, and
Semlyen
,
A.
, 1999, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Deliv.
0885-8977,
14
(
3
), pp.
1052
1061
.
32.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
, 2003, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. 2003-GT-38688.
33.
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2003, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Technol.
0010-2202,
175
, pp.
453
476
.
34.
Stow
,
S. R.
, and
Dowling
,
A. P.
, 2001, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.
35.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Bohn
,
D.
, 2001, “
Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
3
), pp.
557
566
.
36.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Paschereit
,
C. O.
,
Gelbert
,
G.
, and
King
,
R.
, 2007, “
Two Parameter Extremum Seeking for Control of Thermoacoustic Instabilities and Characterization of Linear Growth
,” AIAA Paper No. 2007-1416.
37.
Wang
,
H. -H.
, and
Krstic
,
M.
, 2000, “
Extremum Seeking for Limit Cycle Minimization
,”
IEEE Trans. Automat. Contr.
,
45
(
12
), pp.
2432
2436
.
You do not currently have access to this content.