Fretting fatigue is a random process that continues to be a major source of damage associated with the failure of aircraft gas turbine engine components. Fretting fatigue is dominated by the fatigue crack growth phase and is strongly dependent on the magnitude of the stress values in the contact region. These stress values often have the most influence on small cracks where traditional long-crack fracture mechanics may not apply. A number of random variables can be used to model the uncertainty associated with the fatigue crack growth process. However, these variables can often be reduced to a few primary random variables related to the size and location of the initial crack, variability associated with applied stress and crack growth life models, and uncertainty in the quality and frequency of nondeterministic inspections. In this paper, an approach is presented for estimating the risk reduction associated with the nondestructive inspection of aircraft engine components subjected to fretting fatigue. Contact stress values in the blade attachment region are estimated using a fine mesh finite element model coupled with a singular integral equation solver and combined with bulk stress values to obtain the total stress gradient at the edge of contact. This stress gradient is applied to the crack growth life prediction of a mode I fretting fatigue crack. A probabilistic model of the fretting process is formulated and calibrated using failure data from an existing engine fleet. The resulting calibrated model is used to quantify the influence of inspection on the probability of fracture of an actual military engine disk under real life loading conditions. The results can be applied to quantitative risk predictions of gas turbine engine components subjected to fretting fatigue.

1.
Frost
,
N. E.
,
Marsh
,
K. J.
, and
Pook
,
L. P.
, 1974,
Metal Fatigue
,
Oxford University Press
,
Oxford, UK
.
2.
Rayaproula
,
D.
, and
Cook
,
R.
, 1992, “
A Critical Review of Fretting-Fatigue Investigations at the Royal Aerospace Establishment
,”
Standardization of Fretting-Fatigue Test Methods and Equipment, ASTM STP 1159
,
M.
Delmi
and
R.
Waterhouse
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
129
152
.
3.
Waterhouse
,
R.
, 1992, “
Fretting Fatigue
,”
Int. Mater. Rev.
0950-6608,
37
, pp.
77
97
.
4.
Lindley
,
T. C.
, 1997, “
Fretting Fatigue in Engineering Alloys
,”
Int. J. Fatigue
0142-1123,
19
, pp.
S39
S49
.
5.
Antoniou
,
R. A.
, and
Radtke
,
T. C.
, 1997, “
Mechanisms of Fretting-Fatigue of Titanium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
237
, pp.
229
240
.
6.
Nicholas
,
T.
, 1999, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
21
, pp.
S221
S231
.
7.
Waterhouse
,
R. B.
, 1981, “
Avoidance of Fretting Fatigue Failures
,”
Fretting Fatigue
,
R. B.
Waterhouse
, ed.,
Applied Science
,
London
, pp.
221
240
.
8.
Szolwinski
,
M. P.
, and
Farris
,
T. N.
, 1996, “
Mechanics of Fretting Fatigue Crack Formation
,”
Wear
0043-1648,
198
, pp.
93
107
.
9.
Hills
,
D. A.
, and
Nowell
,
D.
, 1994,
Mechanics of Fretting Fatigue
,
Kluwer
,
Dordrecht
.
10.
Cowles
,
B. A.
, 1996, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
0376-9429,
80
, pp.
147
163
.
11.
Nicholas
,
T.
, and
Zuiker
,
J. R.
, 1996, “
On the Use of the Goodman Diagram for High Cycle Fatigue Design
,”
Int. J. Fract.
0376-9429,
80
, pp.
219
235
.
12.
Nix
,
K.
, and
Lindley
,
T.
, 1985, “
The Application of Fracture Mechanics to Fretting Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
8
, pp.
143
160
.
13.
Faanes
,
S.
, and
Fernando
,
U.
, 1994, “
Life Prediction in Fretting Fatigue Using Fracture Mechanics
,”
Fretting Fatigue
,
Mechanical Engineering Publications
,
London, UK
, pp.
149
159
.
14.
Conner
,
B. P.
,
Lindley
,
T. C.
,
Nicholas
,
T.
, and
Suresh
,
S.
, 2004, “
Application of a Fracture Mechanics Based Life Prediction Method for Contact Fatigue
,”
Int. J. Fatigue
0142-1123,
26
, pp.
511
520
.
15.
Ciavarella
,
M.
, 2003, “
A ‘Crack-Like’ Notch Analogy for Safe-Life Fretting Fatigue Design Methodology
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
1159
1170
.
16.
Navarro
,
C.
,
Munoz
,
S.
, and
Dominguez
,
J.
, 2006, “
Propagation in Fretting Fatigue From a Surface Defect
,”
Tribol. Int.
0301-679X,
39
, pp.
1149
1157
.
17.
Chan
,
K. S.
,
Lee
,
Y. -D.
,
Davidson
,
D. L.
, and
Hudak
,
S. J.
, 2001, “
A Fracture Mechanics Approach to High Cycle Fretting Fatigue Base on the Worst Case Fret Concept
,”
Int. J. Fract.
0376-9429,
112
, pp.
331
353
.
18.
Dini
,
D.
,
Nowell
,
D.
, and
Dyson
,
I. N.
, 2006, “
The Use of Notch and Short Crack Approaches to Fretting Fatigue Threshold Prediction: Theory and Experimental Validation
,”
Tribol. Int.
0301-679X,
39
, pp.
1158
1165
.
19.
Nowell
,
D.
, and
Araujo
,
J. A.
, 1999, “
Small Crack Methodologies and Crack Arrest in Fretting Fatigue
,”
Small Fatigue Cracks: Mechanics, Mechanisms, and Applications
,
K. S.
Ravichandran
,
R. O.
Ritchie
, and
Y.
Murakami
, eds.,
Elsevier Science
,
Oxford, UK
, pp.
361
372
.
20.
Federal Aviation Administration
, 2001, “
Advisory Circular—Damage Tolerance for High Energy Turbine Engine Rotors
,” Paper No. AC 33.14-1.
21.
Federal Aviation Administration
, 2008, “
Advisory Circular—Damage Tolerance of Hole Features in High-Energy Turbine Engine Rotors
,” Paper No. AC 33.70-X.
22.
Enright
,
M. P.
,
McClung
,
R. C.
,
Hudak
,
S. J.
, and
Francis
,
W. L.
, 2006, “
Probabilistic Treatment of Crack Formation and Growth for Gas Turbine Engine Materials
,” ASME Paper No. GT2006-90813.
23.
Zhang
,
R.
, and
Mahadevan
,
S.
, 2000, “
Probabilistic Prediction of Fretting Fatigue Crack Nucleation Life of Riveted Lap Joints
,”
Proceedings of the 41st AIAA Structures, Dynamics, and Materials Conference
, Atlanta, GA, Apr. 3–6, Paper No. AIAA-2000-1645.
24.
Wu
,
Y. T.
,
Enright
,
M. P.
, and
Millwater
,
H. R.
, 2002, “
Probabilistic Methods for Design Assessment of Reliability With Inspection
,”
AIAA J.
0001-1452,
40
(
5
), pp.
937
946
.
25.
Golden
,
P. J.
, and
Calcaterra
,
J.
, 2006, “
A Fracture Mechanics Life Prediction Methodology Applied to Dovetail Fretting
,”
Tribol. Int.
0301-679X,
39
, pp.
1172
1180
.
26.
Calcaterra
,
J.
, and
Naboulsi
,
S.
, 2005, “
Design Methodology to Investigate Contact Fatigue Damage in Turbine Engine Hardware
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1133
1141
.
27.
Gean
,
M. C.
, and
Farris
,
T. N.
, 2005, “
Finite Element Analysis of the Mechanics of Blade/Disk Contacts
,”
Proceedings of the 46th AIAA Structures, Structural Dynamics, and Materials Conference
, Austin, TX, Apr. 18–21.
28.
Golden
,
P. J.
, 2009, “
Development of a Dovetail Fretting Fatigue Fixture for Turbine Engine Materials
,”
Int. J. Fatigue
0142-1123,
31
, pp.
620
628
.
29.
McVeigh
,
P. A.
,
Harish
,
G.
,
Farris
,
T. N.
, and
Szolwinski
,
M. P.
, 1999, “
Modeling Interfacial Conditions in Nominally Flat Contacts for Application to Fretting Fatigue of Turbine Engine Components
,”
Int. J. Fatigue
0142-1123,
21
, pp.
S157
S165
.
30.
Chan
,
K. S.
,
Lee
,
Y. -D.
,
Davidson
,
D. L.
, and
Hudak
,
S. J.
, 2001, “
A Fracture Mechanics Approach to High Cycle Fretting Fatigue Base on the Worst Case Fret Concept
,”
Int. J. Fract.
0376-9429,
112
, pp.
299
330
.
31.
Ciavarella
,
M.
,
Hills
,
D. A.
, and
Monno
,
G.
, 1998, “
The Influence of Rounded Edges on Indentation by a Flat Punch
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
, pp.
319
328
.
32.
Simulia
, 2007, ABAQUS Documentation, Providence, RI.
33.
Southwest Research Institute
, 2008, “
DARWIN® User’s Guide
,” San Antonio, TX.
You do not currently have access to this content.