Gaseous fuels, such as hydrogen and natural gas, are utilized in internal combustion engines for spark-ignition operation. To improve thermal efficiency and to ensure control at good heat-release rates, combustion systems with direct-injection and spontaneous-ignition operation may be preferable. The main objective of this research was to provide fundamental data for the ignition and combustion of hydrogen, natural gas, and methane. Experiments were conducted in a constant-volume combustion vessel to investigate the effects of ambient temperature on ignition delay and combustion characteristics for various injector and ambient conditions. Experimental results showed that all gaseous fuels exhibited similar ignition-delay trends: ignition delay (τ) increased as ambient temperature (Ti) decreased. Among these fuels, hydrogen jets exhibited much shorter τ than natural gas and methane jets at the same Ti and could be ignited at a lower temperature, Ti=780K. A shorter ignition delay of hydrogen may be attained by controlling the mixture formation by lowering the injection pressure (pj), enlarging the nozzle-hole diameter (dN), increasing the ambient pressure (pi), and increasing the oxygen mole fraction (rO2). In contrast, the methane jet exhibited the longest τ over the whole range of Ti and suffered from misfiring at a higher Ti of 910 K. For natural gas, ignition delay was observed to be shorter than that for methane, owing to a small amount of butane with good ignitability. More specifically, the ignition delay of natural gas differed slightly when dN and pj varied but changed drastically when pi and rO2 decreased. Based on these data, the feasibility of gaseous fuels for compression-ignition engines is discussed from the viewpoint of mixture formation and chemical reaction.

1.
Erren
,
R. A.
, and
Campbell
,
W. H.
, 1933, “
Hydrogen: A Commercial Fuel for Internal Combustion Engines and Other Purposes
,”
J. Inst. Fuel
0020-2886,
4
, pp.
277
291
.
2.
De Boer
,
P. C. T.
,
McLean
,
W. J.
, and
Homan
,
H. S.
, 1976, “
Performance and Emissions of Hydrogen Fueled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
0360-3199,
1
(
2
), pp.
153
172
.
3.
France
,
D. H.
, 1980, “
Combustion Characteristics of Hydrogen
,”
Int. J. Hydrogen Energy
0360-3199,
5
(
4
), pp.
369
374
.
4.
Ikegami
,
M.
,
Miwa
,
K.
, and
Shioji
,
M.
, 1982, “
A Study of Hydrogen Fuelled Compression Ignition Engines
,”
Int. J. Hydrogen Energy
0360-3199,
7
(
4
), pp.
341
353
.
5.
Wong
,
J. K. S.
, 1990, “
Compression Ignition of Hydrogen in a Direct Injection Diesel Engine Modified to Operate as a Low-Heat-Rejection Engine
,”
Int. J. Hydrogen Energy
0360-3199,
15
(
7
), pp.
507
514
.
6.
Lee
,
S. J.
,
Yi
,
H. S.
, and
Kim
,
E. S.
, 1995, “
Combustion Characteristics of Intake Port Injection Type Hydrogen Fueled Engine
,”
Int. J. Hydrogen Energy
0360-3199,
20
(
4
), pp.
317
322
.
7.
Yi
,
H. S.
,
Lee
,
S. J.
, and
Kim
,
E. S.
, 1996, “
Performance Evaluation and Emission Characteristics of in-Cylinder Injection Type Hydrogen Fueled Engine
,”
Int. J. Hydrogen Energy
0360-3199,
21
(
7
), pp.
617
624
.
8.
Seirens
,
R.
, and
Resseel
,
E.
, 1998, “
Backfire Mechanism in a Carburetted Hydrogen Fuelled Compression Ignition Engine
,”
Proceedings of the 12th World Hydrogen Conference
, Vol.
2
, pp.
1537
1546
.
9.
Verhelst
,
S.
, and
Sierens
,
R.
, 2001, “
Hydrogen Engine-Specific Properties
,”
Int. J. Hydrogen Energy
0360-3199,
26
(
9
), pp.
987
990
.
10.
Das
,
L. M.
, 1991, “
Exhaust Emission Characterization of Hydrogen-Operated Engine System: Nature of Pollutants and Their Control Techniques
,”
Int. J. Hydrogen Energy
0360-3199,
16
(
11
), pp.
765
775
.
11.
Shioji
,
M.
, and
Inoue
,
N.
, 1998, “
Performance and NOx Formation in a Hydrogen Premixed-Charge Engine
,”
Proceedings of the 12th World Hydrogen Energy Conference
, Vol.
2
, pp.
1469
1478
.
12.
Karim
,
G. A.
, 2003, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
5
), pp.
569
577
.
13.
Shioji
,
M.
, and
Ishiyama
,
T.
, 2002, “
Feasibility of the High Speed Hydrogen Engine
,”
International Symposium on Hydrogen Engine
, pp.
1
9
.
14.
Tang
,
X.
,
Natkin
,
R. L.
,
Boyer
,
B. A.
,
Oltmans
,
B. A.
, and
Potts
,
C.
, 2003, “
Hydrogen IC Engine Boosting Performance and NOx Study
,” SAE Paper No. 2003-01-0631.
15.
Knecht
,
W.
,
Hakimifard
,
D.
, and
Carletta
,
M.
, 1984, “
A Hydrogen Engine for Heavy Duty Vehicles
,” SAE Paper No. 845138.
16.
Saravanan
,
N.
, and
Nagarajan
,
G.
, 2008, “
An Experimental Investigation of Hydrogen-Enriched Air Induction in a Diesel Engine System
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
6
), pp.
1769
1775
.
17.
Kondo
,
T.
,
Himura
,
M.
, and
Furuhama
,
S.
, 1996, “
A Study on the Mechanism of Backfire in External Mixture Formation Hydrogen Engines,”
Proceedings of the 11th World Hydrogen Energy Conference
, Vol.
2
, pp.
1547
1556
.
18.
Shioji
,
M.
,
Eguchi
,
S.
,
Kitazaki
,
M.
, and
Mohammadi
,
A.
, 2004, “
Knock Characteristics and Performance in an SI Engine With Hydrogen and Natural-Gas Blended Fuels
,” SAE Paper No. 2004-01-1929.
19.
Mohammadi
,
A.
,
Shioji
,
M.
,
Nakai
,
Y.
,
Ishikura
,
W.
, and
Tabo
,
E.
, 2007, “
Performance and Combustion Characteristics of a Direct Injection SI Hydrogen Engine
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
2
), pp.
296
304
.
20.
Ishiyama
,
T.
,
Shioji
,
M.
,
Ihara
,
T.
, and
Inoue
,
N.
, 2003, “
Characteristics of Spontaneous Ignition and Combustion in Unsteady High-Speed Gaseous Fuel Jets
,” SAE Paper No. 2003-01-1922.
21.
Mohammadi
,
A.
,
Shioji
,
M.
,
Matsui
,
Y.
, and
Kajiwara
,
R.
, 2008, “
Spark-Ignition and Combustion Characteristics of High-Pressure Hydrogen and Natural-Gas Intermittent Jets
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
6
), p.
062801
.
22.
Ristovski
,
Z. D.
,
Morawska
,
L.
,
Ayoko
,
G. A.
,
Johnson
,
G.
,
Gilbert
,
D.
, and
Greenaway
,
C.
, 2000, “
Particulate Emissions From a Petrol to CNG Converted Spark Ignition Vehicle
,”
J. Aerosol Sci.
0021-8502,
31
, pp.
624
625
.
23.
Ristovski
,
Z. D.
,
Morawska
,
L.
,
Hitchins
,
J.
,
Thomas
,
S.
,
Greenaway
,
C.
, and
Gilbert
,
D.
, 2000, “
Particle Emissions From Compressed Natural Gas Engines
,”
J. Aerosol Sci.
0021-8502,
31
(
4
), pp.
403
413
.
24.
Selim
,
M. Y.
,
Radwan
,
M.
, and
Saleh
,
H.
, 2008, “
Improving the Performance of Dual Fuel Engines Running on Natural Gas/LPG by Using Pilot Fuel Derived From Jojoba Seeds
,”
Renewable Energy
0960-1481,
33
(
6
), pp.
1173
1185
.
25.
Akansu
,
S. O.
,
Dulger
,
Z.
,
Kahraman
,
N.
, and
Veziroglu
,
T. N.
, 2004, “
Internal Combustion Engines Fueled by Natural Gas-Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
14
), pp.
1527
1539
.
26.
Gambino
,
M.
,
Iannaccone
,
S.
, and
Unich
,
A.
, 1991, “
Heavy-Duty Spark Ignition Engines Fueled With Methane
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
(
3
), pp.
359
.
27.
Willi
,
M. L.
, and
Richards
,
B. G.
, 1995, “
Design and Development of a Direct Injected, Glow Plug Ignition-Assisted, Natural Gas Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
(
4
), pp.
799
803
.
28.
Saravanan
,
N.
,
Nagarajan
,
G.
, and
Narayanasamy
,
S.
, 2008, “
An Experimental Investigation on DI Diesel Engine With Hydrogen Fuel
,”
Renewable Energy
0960-1481,
33
(
3
), pp.
415
421
.
29.
Yap
,
D.
,
Peucheret
,
S.
,
Megaritis
,
A.
,
Wyszynski
,
M.
, and
Xu
,
H.
, 2006, “
Natural Gas HCCI Engine Operation With Exhaust Gas Fuel Reforming
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
5
), pp.
587
595
.
30.
Naber
,
J. D.
, and
Siebers
,
D. L.
, 1998, “
Hydrogen Combustion Under Diesel Engine Conditions
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
5
), pp.
363
371
.
31.
Naber
,
J. D.
,
Siebers
,
D. L.
,
Di Julio
,
S. S.
, and
Westbrook
,
C. K.
, 1994, “
Effects of Natural Gas Composition on Ignition Delay Under Diesel Conditions
,”
Combust. Flame
0010-2180,
99
(
2
), pp.
192
200
.
You do not currently have access to this content.