Gas turbine operating state determination consists of the assessment of the modification due to deterioration and fault of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as two nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling, and turbine erosion), occurring in one or more stages simultaneously, are reported in this paper. Moreover, compressor and turbine maps obtained through the stage-by-stage procedure are compared with the ones obtained by means of map scaling. The results show that the values of the scaling factors depend on the corrected rotational speed and on the load. However, since the variation in the scaling factors in the operating region close to the design corrected rotational speed is small, the use of the scaling factor as health indices can be considered acceptable for gas turbine health state determination at full load. Moreover, also the use of scaled maps in order to represent compressor and turbine behavior in deteriorated conditions close to the design corrected rotational speed can be considered acceptable.

1.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
, 2008, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
6
), p.
062401
.
2.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1990, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
168
175
.
3.
Bettocchi
,
R.
, and
Spina
,
P. R.
, 1999, “
Diagnosis of Gas Turbine Operating Conditions by Means of the Inverse Cycle Calculation
,” ASME Paper No. 99-GT-185.
4.
Gulati
,
A.
,
Zedda
,
M.
, and
Singh
,
R.
, 2000, “
Gas Turbine Engine and Sensor Multiple Operating Point Analysis Using Optimization Techniques
,”
Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, Huntsville, AL, Jul. 16–19, Paper No. AIAA 2000-3716.
5.
Saravanamuttoo
,
H. I. H.
, and
Lakshminarasimha
,
A. N.
, 1985, “
A Preliminary Assessment of Compressor Fouling
,” ASME Paper No. 85-GT-153.
6.
Aker
,
G. F.
, and
Saravanamuttoo
H. I. H.
, 1988, “
Predicting Gas Turbine Performance Degradation due to Compressor Fouling Using Computer Simulation Techniques
,” ASME Paper No. 88-GT-206.
7.
Seddigh
,
F.
, and
Saravanamuttoo
,
H. I. H.
, 1990, “
A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling
,” ASME Paper 90-GT-348.
8.
Tabakoff
,
W.
,
Lakshminarasimha
,
A. N.
, and
Pasin
,
M.
, 1990, “
Simulation of Compressor Performance Deterioration Due to Erosion
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
78
83
.
9.
Massardo
,
A.
, 1991, “
Simulation of Fouled Axial Multistage Compressors
,” IMechE Paper No. C423/048.
10.
Cerri
,
G.
,
Salvini
,
C.
,
Procacci
,
R.
, and
Rispoli
,
F.
, 1993, “
Fouling and Air Bleed Extracted Flow Influence on Compressor Performance
,” ASME Paper No. 93-GT-366.
11.
Lakshminarasimha
,
A. N.
,
Boyce
,
M. P.
, and
Meher-Homji
,
C. B.
, 1994, “
Modeling and Analysis of Gas Turbine Performance Deterioration
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
46
52
.
12.
Procacci
,
R.
, and
Rispoli
,
F.
, 1995, “
Off Design Performance Evaluation of Deteriorated Variable Geometry Axial Flow Compressors
,” ASME Paper No. 95-CTP-35.
13.
Spina
,
P. R.
, 2002, “
Gas Turbine Performance Prediction by Using Generalized Performance Curves Of Compressor And Turbine Stages
,” ASME Paper No. GT-2002-30275.
14.
Hale
,
A. A.
, and
Davis
,
M. W.
, 1992, “
Dynamic Turbine Engine Compressor Code DYNTECC—Theory and Capabilities
,”
Proceedings of the 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit
, Nashville, TN, Jul. 6–8, Paper No. AIAA-92-3190.
15.
Schobeiri
,
M. T.
,
Attia
,
M.
, and
Lippe
,
C.
, 1994, “
GETRAN: A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero- and Power Generation Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
483
494
.
16.
Owen
,
A. K.
,
Daugherty
,
A.
,
Garrard
,
D.
,
Reynolds
,
H. C.
, and
Wright
,
R. D.
, 1999, “
A Parametric Starting Study of an Axial-Centrifugal Gas Turbine Engine Using a One-Dimensional Dynamic Engine Model and Comparisons to Experimental Results: Part I—Model Development and Facility Description
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
377
383
.
17.
Theotokatos
,
G.
, and
Kyrtatos
,
N. P.
, 2003, “
Investigation of a Large High-Speed Diesel Engine Transient Behaviour Including Compressor Surging and Emergency Shutdown
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
580
589
.
18.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
, 2009, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
0306-2619,
86
(
2009
), pp.
2466
2475
.
19.
Morini
,
M.
,
Cataldi
,
G.
,
Pinelli
,
M.
,
Venturini
,
M.
, 2007, “
A Model for the Simulation of Large-Size Single-Shaft Gas Turbine Start-Up Based on Operating Data Fitting
,” ASME Paper No. GT2007-27373.
20.
Thermoflow Inc.
, 2007, THERMOFLOW 17, Release 1, Sudbury, MA.
21.
Saravanamuttoo
,
H. I. H.
, and
Mac Isaac
,
B. D.
, 1983, “
Thermodynamic Models for Pipeline Gas Turbine Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
105
, pp.
875
884
.
22.
Kurzke
,
J.
, and
Riegler
,
C.
, 2000, “
A New Map Scaling Procedure for Preliminary Conceptional Design of Gas Turbines
,” ASME Paper No. 2000-GT-0006.
23.
Stone
,
A.
, 1958, “
Effects of Stage Characteristics and Matching on Axial Flow Compressor Performance
,”
Trans. ASME
0097-6822,
80
, pp.
1273
1293
.
24.
Doyle
,
M. D.
, and
Dixon
,
S. l.
, 1962, “
The Stacking of Compressor Stage Characteristics to Give an Overall Compressor Performance Map
,”
Aeronaut. Q.
0001-9259,
13
(
4
), pp.
349
367
.
25.
Robbins
,
W. H.
, and
Dugan
,
J. F.
, 1965, “
Prediction of Off-Design Performance of Multi-Stage Compressors
,”
NASA
Report No. SP-36.
26.
Howell
,
A. R.
, and
Calvert
,
W. J.
, 1978, “
A New Stage Stacking Technique for Axial-Flow Compressor Performance Prediction
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
698
703
.
27.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Spina
,
P. R.
, 2008, “
Development and Validation of a Computational Code for Wet Compression Simulation of Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
012004
.
28.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Bhargava
,
R.
, and
Ingistov
,
S.
, 2008, “
Application of a Computational Code to Simulate Interstage Injection Effects on GE Frame 7EA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
012001
.
29.
Zhu
,
P.
, and
Saravanamuttoo
,
H. I. H.
, 1992, “
Simulation of an Advanced Twin-Spool Industrial Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
114
, pp.
180
186
.
30.
Zwebek
,
A.
, and
Pilidis
,
P.
, 2001, “
Degradation Effects on Combined Cycle Power Plant Performance Part 1: Gas Turbine Cycle Component Degradation Effects
,” ASME Paper No. 2001-GT-0388.
31.
Pinelli
,
M.
, and
Venturini
,
M.
, 2002, “
Application of Methodologies to Evaluate the Health State of Gas Turbines in a Cogenerative Combined Cycle Power Plant
,” ASME Paper GT-2002-30248.
32.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
, 1995, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
117
(
4
), pp.
491
505
.
33.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2009, “CFD Simulation of Fouling on Axial Compressor Stages,” ASME Paper No. GT2009-59025
34.
Muir
,
D. E.
,
Saravanamuttoo
,
H. I. H.
, and
Marshall
,
D. J.
, 1989, “
Health Monitoring of Variable Geometry Gas Turbines for the Canadian Navy
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
111
, pp.
244
250
.
35.
Budinger
,
R. E.
, and
Kaufman
,
H. R.
, 1955, “
Investigation of the Performance of a Turbojet Engine with Variable-Position Compressor Inlet Guide Vanes
,” Report No. NACA RM E54L23a.
36.
Howell
,
A. R.
, and
Bonham
,
R. P.
, 1950, “
Overall and Stage Characteristics of Axial Flow Compressors
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
163
, pp.
235
248
.
You do not currently have access to this content.