High-pressure experiments and chemical kinetics modeling were performed to generate a database and a chemical kinetic model that can characterize the combustion chemistry of methane-based fuel blends containing significant levels of heavy hydrocarbons (up to 37.5% by volume). Ignition delay times were measured in two different shock tubes and in a rapid compression machine at pressures up to 34 atm and temperatures from 740 K to 1660 K. Laminar flame speeds were also measured at pressures up to 4 atm using a high-pressure vessel with optical access. Two different fuel blends containing ethane, propane, n-butane, and n-pentane added to methane were studied at equivalence ratios varying from lean (0.3) to rich (2.0). This paper represents the most comprehensive set of experimental ignition and laminar flame speed data available in the open literature for CH4/C2H6/C3H8/C4H10/C5H12 fuel blends with significant levels of C2+ hydrocarbons. Using these data, a detailed chemical kinetics model based on current and recent work by the authors was compiled and refined. The predictions of the model are very good over the entire range of ignition delay times, considering the fact that the data set is so thorough. Nonetheless, some improvements to the model can still be made with respect to ignition times at the lowest temperatures and for the laminar flame speeds at pressures above 1 atm and at rich conditions.

1.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Simmie
,
J.
,
de Vries
,
J.
,
Antonovski
,
V.
,
Corbin
,
B.
,
Zinner
,
C.
, and
Petersen
,
E.
, 2007, “
Effect of Higher-Order Hydrocarbons on Methane-Based Fuel Chemistry at Gas Turbine Pressures
,” ASME Paper No. GT2007-28039.
2.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
, 2008, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
011506
.
3.
Lieuwen
,
T.
, 2003, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
0748-4658,
19
, pp.
837
846
.
4.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
, 1998, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
0010-2180,
115
, pp.
126
144
.
5.
Higgin
,
R. M. R.
, and
Williams
,
A.
, 1969, “
A Shock-Tube Investigation of the Ignition of Lean Methane and n-Butane Mixtures With Oxygen
,”
Proc. Combust. Inst.
1540-7489,
12
, pp.
579
590
.
6.
Crossley
,
R. W.
,
Dorko
,
E. A.
,
Scheller
,
K.
, and
Burcat
,
A.
, 1972, “
The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves
,”
Combust. Flame
0010-2180,
19
, pp.
373
378
.
7.
Eubank
,
C. S.
,
Rabinowitz
,
M. J.
,
Gardiner
,
W. C.
, Jr.
, and
Zellner
,
R. E.
, 1981, “
Shock-Initiated Ignition of Natural Gas-Air Mixtures
,”
Proc. Combust. Inst.
1540-7489,
18
, pp.
1767
1774
.
8.
Zellner
,
R.
,
Niemitz
,
K. J.
,
Warnatz
,
J.
,
Gardiner
,
W. C.
, Jr.
,
Eubank
,
C. S.
, and
Simmie
,
J. M.
, 1983, “
Hydrocarbon Induced Acceleration of Methane-Air Ignition
,”
Prog. Astronaut. Aeronaut.
0079-6050,
80
, pp.
252
272
.
9.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
, III
, 1994, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
20
, pp.
431
460
.
10.
Naber
,
J. D.
,
Siebers
,
D. L.
,
Di Julio
,
S. S.
, and
Westbrook
,
C. K.
, 1994, “
Effects of Natural Gas Composition on Ignition Delay Under Diesel Conditions
,”
Combust. Flame
0010-2180,
99
, pp.
192
200
.
11.
Griffiths
,
J. F.
,
Coppersthwaite
,
D.
,
Phillips
,
C. H.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
, 1990, “
Auto-Ignition Temperatures of Binary Mixtures of Alkanes in a Closed Vessel: Comparisons Between Experimental Measurements and Numerical Predictions
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
1745
1752
.
12.
Huang
,
J.
, and
Bushe
,
W. K.
, 2006, “
Experimental and Kinetic Study of Autoignition in Methane/Ethane/Air and Methane/Propane/Air Mixtures Under Engine-Relevant Conditions
,”
Combust. Flame
0010-2180,
144
, pp.
74
88
.
13.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A. R.
, and
Crofton
,
M. W.
, 2007, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
937
944
.
14.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Simmons
,
S.
,
Bourque
,
G.
,
Curran
,
H. J.
, and
Simmie
,
J. M.
, 2007, “
Methane/Propane Oxidation at High Pressures: Experimental and Detailed Chemical Kinetic Modeling
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
447
454
.
15.
Petersen
,
E. L.
, and
de Vries
,
J.
, 2005, “
Measuring the Ignition of Fuel Blends Using a Design of Experiments Approach
,” AIAA Paper No. 2005-1165.
16.
de Vries
,
J.
, and
Petersen
,
E. L.
, 2005, “
Design and Validation of a Reduced Test Matrix for the Autoignition of Gas Turbine Fuel Blends
,” ASME Paper No. IMECE2005-80040.
17.
de Vries
,
J.
, and
Petersen
,
E. L.
, 2007, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3163
3171
.
18.
Healy
,
D.
,
Dooley
,
S.
,
Curran
,
H. J.
,
Petersen
,
E.
,
Simmons
,
S.
,
Kalitan
,
D.
,
Bourque
,
G.
, and
Simmie
,
J. M.
, 2006, “
A Rapid Compression Machine Study of Natural Gas Mixtures
,”
Work in Progress Poster 4E-05: 31st International Symposium on Combustion
, Heidelberg, Germany, Aug. 6–11.
19.
Eschenbach
,
R. C.
, and
Agnew
,
J. T.
, 1958, “
Use of a Constant-Volume Bomb Technique for Measuring Burning Velocity
,”
Combust. Flame
0010-2180,
2
, pp.
273
285
.
20.
Agrawal
,
D. D.
, 1981, “
Experimental Determination of Burning Velocity of Methane-Air Mixtures in a Constant Volume Vessel
,”
Combust. Flame
0010-2180,
42
, pp.
243
252
.
21.
Egolfopoulos
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
, 1989, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
0010-2180,
76
, pp.
375
391
.
22.
Savarianandam
,
V. R.
, and
Lawn
,
C. J.
, 2006, “
Burning Velocity of Premixed Turbulent Flames in the Weakly Wrinkled Regime
,”
Combust. Flame
0010-2180,
146
, pp.
1
18
.
23.
Hessler
,
J. P.
, 1998, “
Calculation of Reactive Cross Sections and Microcanonical Rates From Kinetic and Thermochemical Data
,”
J. Phys. Chem. A
1089-5639,
102
, pp.
4517
4526
.
24.
You
,
X.
,
Wang
,
H.
,
Goos
,
E.
,
Sung
,
C. -J.
, and
Klippenstein
,
S. J.
, 2007, “
Reaction Kinetics of CO+HO2→Products: Ab Initio Transition State Theory Study With Master Equation Modeling
,”
J. Phys. Chem. A
1089-5639,
111
, pp.
4031
4042
.
25.
Srinivasan
,
N. K.
,
Michael
,
J. V.
,
Harding
,
L. B.
, and
Klippenstein
,
S. J.
, 2007, “
Experimental and Theoretical Rate Constants for CH4+O2→CH3+HO2
,”
Combust. Flame
0010-2180,
149
, pp.
104
111
.
26.
Jasper
,
A. W.
,
Klippenstein
,
S. J.
, and
Harding
,
L. B.
, 2007, “
Theoretical Rate Coefficients for the Reaction of Methyl Radical and Hydroperoxyl Radical and for Methyl-Hydroperoxide Decomposition
,” private communication.
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/.
28.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 1998, “
A Comprehensive Modeling Study of n-Heptane Combustion
,”
Combust. Flame
0010-2180,
114
, pp.
149
177
.
29.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2002, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
0010-2180,
129
, pp.
253
280
.
30.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
, 2001, “
PREMIX: A Program for Modeling Steady, Laminar, One-Dimensional Premixed Flames
,” Reaction Design, Inc., San Diego, CA.
31.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. D.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
, 2005, “
A Facility for Gas- and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
1716
1729
.
32.
Aul
,
C. J.
,
de Vries
,
J.
, and
Petersen
,
E. L.
, 2007, “
New Shock-Tube Facility for Studies in Chemical Kinetics at Engine Conditions
,”
Eastern States Fall Technical Meeting of the Combustion Institute
, Charlottesville, VA, Oct. 21–24.
33.
Affleck
,
W. S.
, and
Thomas
,
A.
, 1969, “
An Opposed Piston Rapid Compression Machine for Preflame Reaction Studies
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
183
, pp.
365
385
.
34.
Brett
,
L.
,
MacNamara
,
J.
,
Musch
,
P.
, and
Simmie
,
J. M.
, 2001, “
Simulation of Methane Autoignition in a Rapid Compression Machine With Creviced Pistons
,”
Combust. Flame
0010-2180,
124
, pp.
326
329
.
35.
Gallagher
,
S. M.
,
Curran
,
H. J.
,
Metcalfe
,
W. K.
,
Healy
,
D.
,
Simmie
,
J. M.
, and
Bourque
,
G.
, 2008, “
A Rapid Compression Machine Study of the Oxidation of Propane in the Negative Temperature Coefficient Regime
,”
Combust. Flame
0010-2180,
153
, pp.
316
333
.
36.
Lund
,
C. M.
, and
Chase
,
L.
, 1995, “
HCT-A General Computer Program for Calculating Time-Dependent Phenomena Involving One-Dimensional Hydrodynamics, Detailed Chemical Kinetics and Transport
,” Lawrence Livermore National Laboratory, Report No. UCRL-52504.
37.
De Vries
,
J.
,
Corbin
,
B.
, and
Petersen
,
E. L.
, “
Construction of a High Pressure Flame Speed Facility
,” unpublished.
38.
Settles
,
G. S.
, 2006,
Schlieren and Shadowgraph Techniques
, 1st ed.,
Springer
,
Heidelberg, Germany
.
39.
Klimek
,
R.
, and
Wright
,
T.
, 2006, “
Spotlight-8 Image Analysis Software
,” Report No. NASA/TM-2006-214084.
40.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
, 2002, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames Up to 60 atm
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1461
1469
.
41.
Markstein
,
G. H.
, 1964,
Non-Steady Flame Propagation
,
Pergamon
,
New York
.
42.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
, 1990, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
325
332
.
43.
Brown
,
J. M.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1996, “
Markstein Lengths of CO/H2/Air Flames Using Expanding Spherical Flames
,”
Proc. Combust. Inst.
1540-7489,
26
, pp.
875
881
.
You do not currently have access to this content.