Within the European research project (Advanced Transmission and Oil System Concepts), a systematic study of the separation efficiency of a typical aeroengine air∕oil separator design was conducted. The main objectives were to obtain a basic understanding of the main separation mechanisms and to identify the relevant parameters affecting the separation efficiency. The results of the study contribute to an optimized separator technology. Nonintrusive optical measurement techniques like laser diffraction and multiple wavelength extinction were applied to analyze the separation efficiency and identify potential optimization parameters. Oil mist with defined oil droplet size distribution was supplied to the breather. By simultaneously measuring particle size and oil concentration upstream and downstream of the breather, the separation mechanism was analyzed and the separation efficiency was assessed. In addition, the pressure drop across the separator was measured. The pressure drop is an important design feature and has to be minimized for proper sealing of the engine bearing chambers. The experimental programe covered a variation of air flow, oil flow, shaft speed, and droplet size. The main emphasis of the investigations was on the separation of small droplets with a diameter of up to 10μm. The following trends on separation efficiency of small droplets were observed: The separation efficiency increases with increasing rotational speed, with increasing particle size, and with decreasing air flow rate. In parallel, the pressure drop across the breather increases with increasing speed and increasing air flow.

1.
Klingsporn
,
M.
, 2004, “
Advanced Transmission and Oil System Concepts for Modern Jet Engines
,” ASME Paper No. GT-2004-53578.
2.
Schmidt
,
J.
,
Hank
,
W. K.
,
Klein
,
A.
, and
Maier
,
K.
, 1982, “
The Oil∕Air System of a Modern Fighter Aircraft Engine
,” AGARD-CP-329, pp. 71–720.
3.
Willenborg
,
K.
,
Au
,
J.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2005, “
Experimental Investigation of the Two-Phase Flow Through a Leaking Bearing Chamber Seal
,”
Proceedings of the XVII Symposium on Air Breathing Engines (ISABE 2005)
,
Munich, Germany
, Sep. 4–9, AIAA Paper No. 2005̱1207.
4.
Willenborg
,
K.
,
Busam
,
S.
,
Roßkamp
,
H.
, and
Wittig
,
S.
, 2002, “
Experimental Studies of the Boundary Conditions Leading to Oil Fire in the Bearing Chamber and in the Secondary Air System of Aeroengines
,” ASME Paper No. GT-2002-30241.
5.
Zimmermann
,
H.
,
Kammerer
,
A.
,
Fischer
,
R.
, and
Rebhan
,
D.
, 1991, “
Two-Phase Flow Correlations in Air∕oil Systems of Aero Engines
,” ASME Paper No. 91-GT-51.
6.
Fischer
,
R.
, 1998, “
Zweiphasenströmung in Triebwerksleitungen—Theoretische und Experimentelle Untersuchungen von Luft∕Öl Strömungen durch Blenden
,” dissertation, Universität Karlsruhe, Karlsruhe, Germany.
7.
Baker
,
O.
, 1954, “
Simultaneous Flow of Oil and Gas
,”
Oil Gas J.
0030-1388,
23
, pp.
185
195
.
8.
Hewitt
,
G. F.
, and
Roberts
,
D. N.
, 1969, “
Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography
,” AERE Report No. M 2159.
9.
Oshinowo
,
T.
, and
Charles
,
M. E.
, 1974, “
Vertical Two-Phase Flow, Part 1: Flow Pattern Correlation
,”
Can. J. Chem. Eng.
0008-4034,
52
, pp.
25
35
.
10.
Mayinger
,
F.
, 1982,
Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen
,
Springer
,
Wien
.
11.
Wallis
,
G. B.
, 1968,
Two-Phase Flow and Heat Transfer
,
McGraw-Hill
,
New York
.
12.
Brauer
,
H.
, 1971,
Grundlagen der Einphasen-und Mehrphasenströmung
,
Verlag Sauerländer
,
Arau und Frankfurt am Main
.
13.
Busam
,
S.
,
Ebner
,
J.
, and
Wittig
,
S.
, 2001, “
An Experimental Study of Liquid Film Thickness in Annular Air∕Oil Flow in a Vertical Pipe Using a Laser Focus Displacement Meter
,” ASME Paper No. 2001-GT-0116.
14.
Busam
,
S.
, 2004, “
Druckverlust und Wärmeübergang im Entlüftungssystem von Triebwerkslagerkammern
,” dissertation, Universität Karlsruhe, Karlsruhe, Germany.
15.
Wang
,
Y.
,
Care
,
I.
,
Eastwick
,
C. N.
,
Hibberd
,
S.
, and
Simmons
,
K.
, 1999, “
CFD Study of Droplet Motion in a Simplified Breather Chamber Geometry at High Shaft Rotating Speeds
,”
Proceedings of the Fourth International Symposium of Multiphase Flow and Heat Transfer
,
X’ian, China
, Aug. 22–24.
16.
Care
,
I.
,
Hibberd
,
S.
,
Simmons
,
K.
, and
Wang
,
Y.
, 1999, “
CFD Computation of Oil-Air Separation in an Engine Breather
,”
I Mech E Seminar: CFD Technical Developments And Future Trends
, Dec. 13–14.
17.
Hossain
,
M.
,
Wang
,
Y.
,
Eastwick
,
C. N.
,
Simmons
,
K.
, and
Hibberd
,
S.
, 2000, “
A Comparison of Flow Characteristics for Two Aero-Engine Air∕Oil Separators
,”
NAFEMS, Industrial CFD and the Move Towards Multiphase Analysis
, Warwick University, Nov. 8.
18.
Eastwick
,
C.
,
Hibberd
,
S.
,
Simmons
,
K.
,
Wang
,
Y.
,
Care
,
I.
, and
Aroussi
,
A.
, 2001, “
Using CFD to Improve Aero-Engine Air/Oil Separator Design
,” Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Application,
PVP (Am. Soc. Mech. Eng.)
0277-027X,
448-1
.
19.
1997, “
Dunlop Equipment Retimet Deoilers for Aeroengines
,”
Aircraft Engineering and Aerospace Technology
,
69
, pp.
64
66
.
20.
Düsen-Schlick GmbH, Company web site: www.duesen-schlick.dewww.duesen-schlick.de.
21.
Spraying Systems Co., Company web site: www.spray.comwww.spray.com.
22.
Sympatec GmbH, Company web site: www.sympatec.comwww.sympatec.com.
23.
Röthele
,
S.
, and
Witt
,
W.
, 1999, “
Laser Diffraction: Millenium Link for Particle Size Analysis
,”
Cah. Groupe Fr. Rheol.
0373-5699,
11
, pp.
91
95
.
24.
Wittig
,
S. L. K.
,
Zahoransky
,
R. A.
, and
Sakbani
,
Kh.
, 1981, “
The Dispersion Quotient Technique in Submicron Particle Size Analysis
,”
J. Aerosol Sci.
0021-8502,
12
, pp.
183
184
.
25.
Schneider
,
W.
,
Kausch
,
E.
,
Wittig
,
S.
, and
Feld
,
H.-J.
, 1988, “
The Mean Particle Size in Fresh Undiluted Cigarette Smoke Determined by Means of the Dispersion Quotient Method
,”
J. Aerosol Sci.
0021-8502,
19
, pp.
995
898
.
26.
Wittig
,
S.
,
Feld
,
H.-J.
,
Müller
,
A.
,
Samenfink
,
W.
, and
Tremmel
,
A.
, 1990, “
Application of the Dispersion-Quotient Method Under Technical System Conditions
,”
Proceedings of the Second International Congress on Optical Particle Sizing
,
Tempe, AZ
, Mar. 5–9.
27.
Dittmann
,
R.
,
Feld
,
H.-J.
,
Samenfink
,
W.
, and
Wittig
,
S.
, 1994, “
Multiple Wavelength Extinction Technique for Particle Characterization in Dense Particle Clouds
,”
Part. Part. Syst. Charact.
0934-0866,
11
, pp.
379
384
.
28.
Glahn
,
S.
,
Busam
,
S.
,
Blair
,
M. F.
,
Allard
,
K. L.
, and
Wittig
,
S.
, 2002, “
Droplet Generation by Disintegration of Oil Films at the Rim of a Rotating Disk
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
117
124
.
29.
Glahn
,
S.
,
Blair
,
M. F.
,
Allard
,
K. L.
,
Busam
,
S.
,
Schäfer
,
O.
, and
Wittig
,
S.
, 2003, “
Disintegration of Oil Jets Emerging From Axial Passages at the Face of a Rotating Cylinder
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
1003
1010
.
30.
Glahn
,
S.
,
Blair
,
M. F.
,
Allard
,
K. L.
,
Busam
,
S.
,
Schäfer
,
O.
, and
Wittig
,
S.
, 2003, “
Disintegration of Oil Films Emerging From Radial Holes in a Rotating Cylinder
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
1011
1020
.
31.
Gorse
,
P.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
, 2005, “
The Effect of Airflow Across Aero-Engine Roller Bearing on Oil Droplet Generation
,”
Proceedings of the XVII Symposium on Air Breathing Engines (ISABE 2005)
,
Munich, Germany
, Sept. 4–9, AIAA Paper No. 2005̱1208.
You do not currently have access to this content.