This paper presents the thermodynamic and cost analysis of a coal-based zero-atmospheric emissions electric power plant. The approach involves an oxygen-blown coal gasification unit. The resulting synthetic gas (syngas) is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed almost entirely of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of carbon dioxide then results that can be used for enhanced oil recovery or for sequestration. The term zero emission steam technology is used to describe this technology. We present the analysis of a 400MW electric power plant. The power plant has a net thermal efficiency of 39%. This efficiency is based on the lower heating value of the coal, and includes the energy necessary for coal gasification, air separation, and for carbon dioxide separation and sequestration. This paper also presents an analysis of the cost of electricity and the cost of conditioning carbon dioxide for sequestration. Electricity cost is compared for three different gasification processes (Texaco, Shell, and Koppers-Totzek) and two types of coals (Illinois 6 and Wyodak). COE ranges from 5.95¢kWhto6.15¢kWh, indicating a 3.4% sensitivity to the gasification processes considered and the coal types used.

1.
DOE
, 2003, “
FutureGen
,” U.S. Department of Energy Announcement, February 2, 2003.
2.
Bilger
,
R. D.
, 1999, “
Zero Release Combustion Technologies and the Oxygen Economy
,”
Proceedings of the Fifth International Conference on Technologies and Combustion for a Clean Environment
,
Lisbon, Portugal
, pp.
167
176
.
3.
Falk-Pederson
,
O.
, and
Dannström
,
H.
, 1997, “
Separation of Carbon Dioxide From Offshore Gas Turbine Exhaust
,”
Energy Convers. Manage.
0196-8904,
38
, pp.
S81
S86
.
4.
Herzog
,
H.
,
Drake
,
E.
, and
Adams
,
E.
, 1997, “
CO2 Capture, Reuse, and Storage Technologies for Mitigation Global Climate Change
,” U.S. Department of Energy, Final Report No. DE-AF22–96PC01257.
5.
Stevens
,
S. H.
, and
Gale
,
J.
, 2000, “
Geologic CO2 Sequestration May Benefit Upstream Industry
,”
Oil Gas J.
0030-1388,
98
, pp.
40
44
.
6.
Wildenborg
,
T.
, 2000, “
Costs of CO2 Sequestration by Underground Storage
,” Greenhouse Issues, International Energy Agency Greenhouse Gas R&D Programme, Report No. 47, pp.
2
4
.
7.
Wong
,
S.
, and
Gunter
,
B.
, 1999, “
Testing CO2-Enhanced Coalbed Methane Recovery
,” Greenhouse Issues, International Energy Agency Greenhouse Gas R&D Programme, Report No. 45, pp.
1
3
.
8.
Anderson
,
R. E.
,
Brandt
,
H.
,
Mueggenburg
,
H. H.
,
Taylor
,
J.
, and
Viteri
,
F.
, 1998, “
A Power Plant Concept Which Minimizes the Cost of Carbon Dioxide Sequestration and Eliminates the Emission of Atmospheric Pollutants
,”
Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies
,
P.
Reimer
,
B.
Eliasson
, and
A.
Wokaun
, eds., Interlaken, Switzerland, Pergamon, London.
9.
Anderson
,
R. E.
,
Brandt
,
H.
,
Doyle
,
S. E.
,
Mueggenburg
,
H. H.
,
Taylor
,
J.
, and
Viteri
,
F.
, 2000, “
A Unique Process for Production of Environmentally Clean Electric Power Using Fossil Fuels
,”
Proceedings of the Eighth International Symposium Transport Phenomena and Dynamics Rotating Machinery (ISROMAC-8)
,
Pacific Center of Thermal-Fluids Engineering
,
Honolulu, HI
.
10.
Smith
,
J. R.
,
Surles
,
T.
,
Marais
,
B.
,
Brandt
,
H.
, and
Viteri
,
F.
, 2000, “
Power Production with Zero Atmospheric Emissions for the 21st Century
,”
Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies
, Cairns, Queensland, Australia.
11.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Smith
,
J. R.
, and
Brandt
,
H.
, 2004, “
Thermodynamic Analysis of Zero-Atmospheric Emissions Power Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
2
8
.
12.
Viteri
,
F.
, 1993, “
Turbomachinery for Modified Ericsson Engines and Other Power/Refrigeration Applications
,” U.S. Patent No. 5473899.
13.
Viteri
,
F.
, 1997, “
Turbocharged Reciprocation Engine for Power and Refrigeration Using the Modified Ericsson Cycle
,” U.S. Patent No. 5590528.
14.
Viteri
,
F.
, 1997, “
Clean Air Engines for Transportation and Other Power Applications
,” U.S. Patent No. 5680764.
15.
Beichel
,
R.
, 1998, “
Reduced Pollution Hydrocarbon Combustion Gas Generator
,” U.S. Patent No. 5709077.
16.
Beichel
,
R.
, 1998, “
Reduced Pollution Power Generation System
,” U.S. Patent No. 5715673.
17.
Beichel
,
R.
, 1999, “
Reduced Pollution Power Generation System Having Multiple Turbines and Reheater
,” U.S. Patent No. 5956937.
18.
Beichel
,
R.
, 1999, “
Reduced Pollution Hydrocarbon Combustion Gas Generator
,” U.S. Patent No. 5970702.
19.
Viteri
,
F.
,
Taylor
,
J. P.
,
Brandt
,
H.
, and
Anderson
,
R. E.
, 2000, “
Hydrocarbon Combustion Power Generation System with CO2 Sequestration
,” U.S. Patent No. 6170264.
20.
Mueggenburg
,
H. H.
, 2001, “
Steam Generator Injector
,” U.S. Patent No. 6206684.
21.
Viteri
,
F.
, 2001, “
Clean Air Engines for Transportation and Other Power Applications
,” U.S. Patent No. 6247316.
22.
Cargill
,
P.
,
DeJonghe
,
G.
,
Howsley
,
T.
,
Lawson
,
B.
,
Leighton
,
L.
, and
Woodward
,
M.
, 2001, “
Piñon Pine IGCC Project: Final Technical Report to the Department of Energy
,” DOE Report No. DE-FC21-92MC29309.
23.
Sundin
,
U.
, 1994, “
The Puertollano IGCC Project, a 335MW Demonstration Power Plant for the Electricity Companies in Europe
,”
Proceedings of the 13th EPRI Conference on Gasification Power Plants
, San Francisco, CA.
24.
Bechtel Power Corporation
, and
Radian Corporation
, 1986, “
Cool Water Coal Gasification Program, Fourth Annual Progress Report
,” EPRI Interim Report No. AP-4832.
25.
Tsatsaronis
,
G.
, and
Tawfik
,
T.
, 1990, “
Performance Comparisons of Integrated Gasification-Combined Cycle Power Plants
,”
Proceedings of the 25th Intersociety Energy Conversion Engineering Conference
,
Reno, NV
, Vol.
5
, pp.
490
494
.
26.
Cook
,
C. S.
,
Corman
,
J. C.
, and
Todd
,
D.
, M., 1995, “
System Evaluation and LBTU Fuel Combustion Studies for IGCG Power Generation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
673
677
.
27.
McCullough
,
G. R.
,
van der Burgt
,
M. J.
, and
Waller
,
J.
, 1982, “
Shell Coal Gasification Process
,”
Shell Development Company Westhollow Research Center
, Houston, TX.
28.
Farnsworth
,
J. F.
, 1978, “
Carbonization of Coal and Gas Making
,” Marks’
Standard Handbook for Mechanical Engineers
,
McGraw-Hill
,
New York
.
29.
Klein
,
S. A.
, and
Alvarado
,
F. L.
, 2002 “
Engineering Equation Solver
,” F-CHART Software, Madison, WI.
30.
Kobayashi
,
H.
, and
Prasad
,
R.
, 1999, “
A Review of Oxygen Combustion and Oxygen Production Systems
,”
Praxair Technology, Inc.
31.
Electric Power Research Institute
(EPRI), 2000, “
Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal
,” EPRI, Palo Alto, CA,
U.S. Department of Energy—Office of Fossil Energy
, Germantown, MD, and
U.S. Department of Energy/NETL
, Pittsburgh, PA, p.
1000316
.
32.
Armstrong
,
P.
,
Sorensen
,
J.
, and
Foster
,
T.
, 2003, “
ITM Oxygen: An Enabler for IGCC
,”
Proceedings of the Gasification Technologies Conference
,
San Francisco, CA
.
33.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
Bannister
,
R. L.
,
Newby
,
R. A.
, and
Yang
,
W. C.
, 1999, “
Final Report on the Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
38
45
.
35.
Bolland
,
O.
,
Kvamsdal
,
H. K.
, and
Boden
,
J. C.
, 2001, “
A Thermodynamic Comparison of the Oxy-Fuel Power Cycles Water-Cycle, Gratz-Cycle and Matiant-Cycle
,”
Proceedings of the International Conference of Power Generation and Sustainable Development
,
Liège, Belgium
.
36.
Aoki
,
S.
,
Uematsu
,
K.
,
Suenaga
,
K.
,
Mori
,
H. H.
, and
Sugishita
,
H.
, 1998, “
A Study of Hydrogen Combustion Turbines
,”
Proceedings of the International Gas Turbines and Aeroengines Congress and Exhibition
,
Stockholm, Sweden
.
37.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1991, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Chemical Kinetics
,” Sandia National Laboratories, Report No. SAND89–8009B.
38.
Bowman
,
C. T.
,
Frenklach
,
M.
,
Wang
,
H.
,
Goldberg
,
M.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
, Jr.
, and
Lissianski
,
V.
, 1997, “
GRI-MECH2.11—An Optimized Detailed Chemical Reaction Mechanism for Natural Gas Combustion and NO Formation and Reburning
,”
Proceedings of the American Institute Chemical Engineers
,
Los Angeles, CA, AIChE, New York
.
39.
IAPWS
, 1996, “
Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for Generaland Scientific Use
,” IAPWS Secretariat, http://www.iapws.org/release. htmhttp://www.iapws.org/release. htm
40.
Span
,
R.
, and
Wagner
,
W.
, 1996, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100K at Pressures up to 800MPa
,”
J. Phys. Chem. Ref. Data
0047-2689,
25
, pp.
1509
1596
.
41.
Sonntag
,
R. E.
, and
Van Wylen
,
G. J
,
, 1986,
Fundamentals of Classical Thermodynamics
,
Wiley
,
New York
.
42.
McCarty
,
R. D.
, 1977,
Hydrogen: Its Technology and Implications
(
Hydrogen Properties Vol. III
)
K. E.
Cox
, and
K. D.
Williamson
, eds.,
CRC
,
Cleveland, OH
.
43.
Horlock
,
J. H.
, 1995, “
Combined Power Plants—Past, Present and Future
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
608
616
.
44.
Marin
,
O.
,
Bourhis
,
Y.
,
Perrin
,
N.
,
Di Zanno
,
P.
,
Viteri
,
F.
, and
Anderson
,
R. E
, 2003, “
High Efficiency, Zero Emission Power Generation Based on a High-Temperature Steam Cycle
,”
Proceedings of the 28th International Technical Conference on Coal Utilization and Fuel Systems
, Clearwater, FL.
45.
Chiesa
,
P.
, and
Lozza
,
G.
, 1999, “
CO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles: PartA—with Oxygen-Blown Combusiton
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
635
641
.
46.
Chiesa
,
P.
, and
Lozza
,
G.
, 1999, “
CO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles: Part B—With Air-Blown Combustion and CO2 Physical Absorption
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
642
649
.
47.
Chiesa
,
P.
, and
Consonni
,
S.
, 2000, “
Natural Gas Fired Combined Cycles With Low CO2 Emissions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
429
436
.
48.
Anderson
,
R. E.
,
Hoffman
,
L. C.
, and
Viteri
,
F.
, 2004, “
Integration of Clean Energy System’s Technology With Air Separation Units, Gas Turbines and Steam Turbines into Zero-Emission Power Plants
,”
Natural Gas Technologies Conference II
,
Phoenix, AZ
.
You do not currently have access to this content.