Aircraft emissions of trace sulfur and nitrogen oxides contribute to the generation of fine volatile particulate matter (PM). Resultant changes to ambient PM concentrations and radiative properties of the atmosphere may be important sources of aviation-related environmental impacts. This paper addresses engine design and operational impacts on aerosol precursor emissions of SOx and NOy species. Volatile PM formed from these species in the environment surrounding an aircraft is dependent on intraengine oxidation processes occurring both within and downstream of the combustor. This study examines the complex response of trace chemistry to the temporal and spatial evolution of temperature and pressure along this entire intraengine path after combustion through the aft combustor, turbine, and exhaust nozzle. Low-order and higher-fidelity tools are applied to model the interaction of chemical and fluid mechanical processes, identify important parameters, and assess uncertainties. The analysis suggests that intraengine processing is inefficient. For in-service engine types in the large commercial aviation fleet, mean conversion efficiency (ε) is estimated to be 2.8–6.5% for sulfate precursors and 0.3–5.7% for nitrate precursors at the engine exit plane. These ranges reflect technological differences within the fleet, a variation in oxidative activity with operating mode, and modeling uncertainty stemming from variance in rate parameters and initial conditions. Assuming that sulfur-derived volatile PM is most likely, these results suggest emission indices of 0.060.13gkg fuel, assuming particles nucleated as 2H2SO4H2O for a fuel sulfur content of 500ppm.

1.
Lukachko
,
S. P.
,
Waitz
,
I. A.
,
Miake-Lye
,
R. C.
,
Brown
,
R. C.
, and
Anderson
,
M. R.
, 1998, “
Production of Sulfate Aerosol Precursors in the Turbine and Exhaust Nozzle of an Aircraft Engine
,”
J. Geophys. Res., [Atmos.]
0148-0227,
103
(
D13
), pp.
16159
16174
.
2.
U.S. Environmental Protection Agency, EPA
, 2004, “
Air Quality Criteria for Particulate Matter, Volumes 1 and 2
,” National Center for Environmental Assessment-RTP Office, Office of Research and Development, Report No. EPA∕600∕P-99∕002bF.
3.
IPCC
1999, Intergovernmental Panel on Climate Change, 1999,
Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change
,
J. E.
Penner
,
D. H.
Lister
,
D. J.
Griggs
,
D. J.
Dokken
, and
M.
McFarland
, eds.,
Cambridge University Press
,
Cambridge, UK
.
4.
Schumann
,
U.
,
Schlager
,
H.
,
Arnold
,
F.
,
Ovarlez
,
J.
,
Kelder
,
H.
,
Hov
,
Ø.
,
Hayman
,
G.
,
Isaksen
,
I. S. A.
,
Staehelin
,
J.
, and
Whitefield
,
P. D.
, 2000, “
Pollution From Aircraft Emissions in the North Atlantic Flight Corridor: Overview on the POLINAT Projects
,”
J. Geophys. Res., [Atmos.]
0148-0227,
105
(
D3
), pp.
3605
3631
.
5.
Anderson
,
B. E.
,
Cofer
,
W. R.
,
Bagwell
,
D. R.
,
Barrick
,
J. W.
,
Hudgins
,
C. H.
, and
Brunke
,
K. E.
, 1998, “
Airborne Observations of Aircraft Aerosol Emissions. I: Total Nonvolatile Particle Emission Indices
,”
Geophys. Res. Lett.
0094-8276,
25
(
10
), pp.
1689
1692
.
6.
Miake-Lye
,
R. C.
,
Anderson
,
B. E.
,
Cofer
,
W. R.
,
Wallio
,
H. A.
,
Nowicki
,
G. D.
,
Ballenthin
,
J. O.
,
Hunton
,
D. E.
,
Knighton
,
W. B.
,
Miller
,
T. M.
,
Seeley
,
J. V.
, and
Viggiano
,
A. A.
, 1998, “
SOx Oxidation and Volatile Aerosol in Aircraft Exhaust Plumes Depend on Fuel Sulfur Content
,”
Geophys. Res. Lett.
0094-8276,
25
(
10
), pp.
1677
1680
.
7.
Anderson
,
B. E.
,
Cofer
,
W. R.
,
Barrick
,
J. D.
,
Bagwell
,
D. R.
, and
Hudgins
,
C. H.
, 1998, “
Airborne Observations of Aircraft Aerosol Emissions. II: Factors Controlling Volatile Particle Production
,”
Geophys. Res. Lett.
0094-8276,
25
(
10
), pp.
1693
1696
.
8.
Döpelheuer
,
A.
, 2001, “
Quantities, Characteristics and Reduction Potentials of Aircraft Engine Emissions
,”
World Aviation Congress and Exposition
,
Society of Automotive Engineers
,
Seattle, WA
, Paper No. SAE 2001-01-3008.
9.
Karcher
,
B.
, 1997, “
Heterogeneous Chemistry in Aircraft Wakes: Constraints for Uptake Coefficients
,”
J. Geophys. Res., [Atmos.]
0148-0227,
102
(
D15
), pp.
19119
19135
.
10.
Yu
,
F. Q.
,
Turco
,
R. P.
, and
Karcher
,
B.
, 1999, “
The Possible Role of Organics in the Formation and Evolution of Ultrafine Aircraft Particles
,”
J. Geophys. Res., [Atmos.]
0148-0227,
104
(
D4
), pp.
4079
4087
.
11.
Schumann
,
U.
,
Arnold
,
F.
,
Busen
,
R.
,
Curtius
,
J.
,
Karcher
,
B.
,
Kiendler
,
A.
,
Petzold
,
A.
,
Schlager
,
H.
,
Schroder
,
F.
, and
Wohlfrom
,
K. H.
, 2002, “
Influence of Fuel Sulfur on the Composition of Aircraft Exhaust Plumes: The Experiments SULFUR 1–7
,”
J. Geophys. Res., [Atmos.]
0148-0227,
107
(
D15
),
4247
.
12.
Brown
,
R. C.
,
Anderson
,
M. R.
,
MiakeLye
,
R. C.
,
Kolb
,
C. E.
,
Sorokin
,
A. A.
, and
Buriko
,
Y. Y.
, 1996, “
Aircraft Exhaust Sulfur Emissions
,”
Geophys. Res. Lett.
0094-8276,
23
(
24
), pp.
3603
3606
.
13.
Tremmel
,
H. G.
, and
Schumann
,
U.
, 1999, “
Model Simulations of Fuel Sulfur Conversion Efficiencies in an Aircraft Engine: Dependence on Reaction Rate Constants and Initial Species Mixing Ratios
,”
Aerosp. Sci. Technol.
1270-9638,
3
(
7
), pp.
417
430
.
14.
Starik
,
A. M.
,
Savel’ev
,
A. M.
,
Titova
,
N. S.
, and
Schumann
,
U.
, 2002, “
Modeling of Sulfur Gases and Chemiions in Aircraft Engines
,”
Aerosp. Sci. Technol.
1270-9638,
6
(
1
), pp.
63
81
.
15.
Reiner
,
T.
, and
Arnold
,
F.
, 1993, “
Laboratory Flow Reactor Measurements of the Reaction SO3+H2O+M−H2SO4+M-Implications for Gaseous H2SO4 and Aerosol Formation in the Plumes of Jet Aircraft
,”
Geophys. Res. Lett.
0094-8276,
20
(
23
), pp.
2659
2662
.
16.
Karcher
,
B.
,
Busen
,
R.
,
Petzold
,
A.
,
Schroder
,
F. P.
,
Schumann
,
U.
, and
Jensen
,
E. J.
, 1998, “
Physicochemistry of Aircraft-Generated Liquid Aerosols, Soot, and Ice Particles. 2. Comparison With Observations and Sensitivity Studies
,”
J. Geophys. Res., [Atmos.]
0148-0227,
103
(
D14
), pp.
17129
17147
.
17.
Schröder
,
F. P.
,
Karcher
,
B.
,
Petzold
,
A.
,
Baumann
,
R.
,
Busen
,
R.
,
Hoell
,
C.
, and
Schumann
,
U.
, 1998, “
Ultrafine Aerosol Particles in Aircraft Plumes: In Situ Observations
,”
Geophys. Res. Lett.
0094-8276,
25
(
15
), pp.
2789
2792
.
18.
Schumann
,
U.
,
Strom
,
J.
,
Busen
,
R.
,
Baumann
,
R.
,
Gierens
,
K.
,
Krautstrunk
,
M.
,
Schroder
,
F. P.
, and
Stingl
,
J.
, 1996, “
In Situ Observations of Particles in Jet Aircraft Exhausts and Contrails for Different Sulfur-Containing Fuels
,”
J. Geophys. Res., [Atmos.]
0148-0227,
101
(
D3
), pp.
6853
6869
.
19.
Kolb
,
C. E.
,
Jayne
,
J. T.
,
Worsnop
,
D. R.
,
Molina
,
M. J.
,
Meads
,
R. F.
, and
Viggiano
,
A. A.
, 1994, “
Gas-Phase Reaction of Sulfur-Trioxide With Water-Vapor
,”
J. Am. Chem. Soc.
0002-7863,
116
(
22
), pp.
10314
10315
.
20.
Karcher
,
B.
,
Peter
,
T.
, and
Ottmann
,
R.
, 1995, “
Contrail Formation—Homogeneous Nucleation of H2SO4∕H2O Droplets
,”
Geophys. Res. Lett.
0094-8276,
22
(
12
), pp.
1501
1504
.
21.
Yu
,
F. Q.
, and
Turco
,
R. P.
, 1997, “
The Role of Ions in the Formation and Evolution of Particles in Aircraft Plumes
,”
Geophys. Res. Lett.
0094-8276,
24
(
15
), pp.
1927
1930
.
22.
Brown
,
R. C.
,
MiakeLye
,
R. C.
,
Anderson
,
M. R.
,
Kolb
,
C. E.
, and
Resch
,
T. J.
, 1996, “
Aerosol Dynamics in Near-Field Aircraft Plumes
,”
J. Geophys. Res., [Atmos.]
0148-0227,
101
(
D17
), pp.
22939
22953
.
23.
Karcher
,
B.
, 1998, “
Physicochemistry of Aircraft-Generated Liquid Aerosols, Soot, and Ice Particles. 1. Model Description
,”
Geophys. Res. Lett.
0094-8276,
103
(
D14
), pp.
17111
17128
.
24.
Karcher
,
B.
, 1999, “
Aviation-Produced Aerosols and Contrails
,”
Surv. Geophys.
0169-3298,
20
(
2
), pp.
113
167
.
25.
Dakhel
,
P. M.
,
Lukachko
,
S. P.
,
Waitz
,
I. A.
,
Brown
,
R. C.
, and
Miake-Lye
,
R. C.
, 2007, “
Post-Combustion Evolution of Soot Properties in an Aircraft Engine
,”
J. Propul. Power
0748-4658,
23
(
5
), pp.
942
948
.
26.
Miake-Lye
,
R. C.
,
Brown
,
R. C.
,
Anderson
,
M. R.
, and
Kolb
,
C. E.
, 1994, “
Calculations of Condensation and Chemistry in an Aircraft Contrial
,”
Impact of Emissions From Aircraft and Spacecraft Upon the Atmosphere
,
U.
Schumann
and
D.
Wurzel
, eds.,
Proceedings of an International Scientific Colloquium
, Cologne, Germany, April 18–20, DLR-Mitteilung 94-06, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen and Cologne, Germany.
27.
Gleitsmann
,
G.
, and
Zellner
,
R.
, 1999, “
The Aerosol Dynamics of H2O–H2SO4–HNO3 Mixtures in Aircraft Wakes. a Modeling Study
,”
Phys. Chem. Chem. Phys.
1463-9076,
1
(
24
), pp.
5503
5509
.
28.
Detwiler
,
A. G.
, and
Jackson
,
A.
, 2002, “
Contrail Formation and Propulsion Efficiency
,”
J. Aircr.
0021-8669,
39
(
4
), pp.
638
644
.
29.
Travis
,
D. J.
,
Carleton
,
A. M.
, and
Lauritsen
,
R. G.
, 2002, “
Climatology: Contrails Reduce Daily Temperature Range—A Brief Interval When the Skies Were Clear of Jets Unmasked an Effect on Climate
,”
Nature (London)
0028-0836,
418
(
6898
), pp.
601
601
.
30.
Boucher
,
O.
, 1999, “
Air Traffic May Increase Cirrus Cloudiness
,”
Nature (London)
0028-0836,
397
(
6714
), pp.
30
31
.
31.
Meyer
,
R.
,
Mannstein
,
H.
,
Meerkotter
,
R.
,
Schumann
,
U.
, and
Wendling
,
P.
, 2002, “
Regional Radiative Forcing by Line-Shaped Contrails Derived From Satellite Data
,”
J. Geophys. Res., [Atmos.]
0148-0227,
107
(
D10
),
4113
.
32.
Marquart
,
S.
,
Ponater
,
M.
,
Mager
,
F.
, and
Sausen
,
R.
, 2003, “
Future Development of Contrail Cover, Optical Depth, and Radiative Forcing: Impacts of Increasing Air Traffic and Climate Change
,”
J. Clim.
0894-8755,
16
(
17
), pp.
2890
2904
.
33.
Minnis
,
P.
,
Ayers
,
J. K.
,
Palikonda
,
R.
, and
Phan
,
D.
, 2004, “
Contrails, Cirrus Trends, and Climate
,”
J. Clim.
0894-8755,
17
(
8
), pp.
1671
1685
.
34.
Schumann
,
U.
, 2003, “
Aviation, Atmosphere, and Climate—What Has Been Learned
,”
European Conference on Aviation, Atmosphere and Climate (AAC), Proceedings of an International Conference
,
European Commission
,
Friedrichshafen, Germany
, pp.
349
351
.
35.
Arnold
,
F.
,
Stilp
,
T.
,
Busen
,
R.
, and
Schumann
,
U.
, 1998, “
Jet Engine Exhaust Chemiion Measurements: Implications for Gaseous SO3 and H2SO4
,”
Atmos. Environ.
1352-2310,
32
(
18
), pp.
3073
3077
.
36.
Curtius
,
J.
,
Arnold
,
F.
, and
Schulte
,
P.
, 2002, “
Sulfuric Acid Measurements in the Exhaust Plume of a Jet Aircraft in Flight: Implications for the Sulfuric Acid Formation Efficiency
,”
Geophys. Res. Lett.
0094-8276,
29
(
7
),
1113
.
37.
Katragkou
,
E.
,
Wilhelm
,
S.
,
Arnold
,
F.
, and
Wilson
,
C.
, 2004, “
First Gaseous Sulfur (VI) Measurements in the Simulated Internal Flow of an Aircraft Gas Turbine Engine During Project Partemis
,”
Geophys. Res. Lett.
0094-8276,
31
(
2
),
2117
.
38.
Karcher
,
B.
,
Turco
,
R. P.
,
Yu
,
F.
,
Danilin
,
M. Y.
,
Weisenstein
,
D. K.
,
Miake-Lye
,
R. C.
, and
Busen
,
R.
, 2000, “
A Unified Model for Ultrafine Aircraft Particle Emissions
,”
J. Geophys. Res., [Atmos.]
0148-0227,
105
(
D24
), pp.
29379
29386
.
39.
Harris
,
B. W.
, 1990, “
Conversion of Sulfur-Dioxide to Sulfur-Trioxide in Gas-Turbine Exhaust
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
112
(
4
), pp.
585
589
.
40.
Arnold
,
F.
,
Scheid
,
J.
,
Stilp
,
T.
,
Schlager
,
H.
, and
Reinhardt
,
M. E.
, 1992, “
Measurements of Jet Aircraft Emissions at Cruise Altitude. I. The Odd-Nitrogen Gases NO, NO2, HNO2 and HNO3
,”
Geophys. Res. Lett.
0094-8276,
19
(
24
), pp.
2421
2424
.
41.
Brundish
,
K.
,
Clague
,
A. R.
,
Wilson
,
C. W.
,
Miake-Lye
,
R. C.
,
Brown
,
R. C.
,
Wormhoudt
,
J.
,
Lukachko
,
S. P.
,
Chobot
,
A. T.
,
Yam
,
C. K.
,
Waitz
,
I. A.
,
Hagen
,
D. E.
,
Schmid
,
O.
, and
Whitefield
,
P.
, 2007, “
Evolution of Carbonaceous Aerosol and Aerosol Precursor Emissions Through a Jet Engine
,”
J. Propul. Power
0748-4658,
23
(
5
), pp.
959
970
.
42.
Haschberger
,
P.
, and
Lindermeir
,
E.
, 1997, “
Observation of NO and NO2 in the Young Plume of an Aircraft Jet Engine
,”
Geophys. Res. Lett.
0094-8276,
24
(
9
), pp.
1083
1086
.
43.
Miake-Lye
,
R. C.
,
Martinez-Sanchez
,
M.
,
Brown
,
R. C.
, and
Kolb
,
C. E.
, 1993, “
Plume and Wake Dynamics, Mixing, and Chemistry Behind a High-Speed Civil Transport Aircraft
,”
J. Aircr.
0021-8669,
30
(
4
), pp.
467
479
.
44.
Hunter
,
S. C.
, 1982, “
Formation of SO3 in Gas-Turbines
,”
J. Eng. Power
0022-0825,
104
(
1
), pp.
44
51
.
45.
Wilson
,
C. W.
,
Clague
,
A. R.
,
Pourkashanian
,
M.
, and
Ma
,
L.
, 2004, “
Chemical Kinetic Modeling of the Evolution of Gaseous Aerosol Precursors Within a Gas Turbine Engine
,”
ASME Turbo Expo 2004
,
American Society of Mechanical Engineers
,
Vienna, Austria
, Paper No. GT2004-53704.
46.
Mueller
,
M. A.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 2000, “
Kinetic Modeling of the CO∕H2O∕O2∕NO∕SO2 System: Implications for High Pressure Fall-Off in the SO2+O(+M)=SO3(+M) Reaction
,”
Int. J. Chem. Kinet.
0538-8066,
32
(
6
), pp.
317
339
.
47.
Glarborg
,
P.
,
Kubel
,
D.
,
DamJohansen
,
K.
,
Chiang
,
H. M.
, and
Bozzelli
,
J. W.
, 1996, “
Impact of SO2 and NO on CO Oxidation Under Post-Flame Conditions
,”
Int. J. Chem. Kinet.
0538-8066,
28
(
10
), pp.
773
790
.
48.
Brown
,
R. C.
,
Miake-Lye
,
R. C.
,
Lukachko
,
S. P.
, and
Waitz
,
I. A.
, 2002, “
Heterogeneous Reactions in Aircraft Gas Turbine Engines
,”
Geophys. Res. Lett.
0094-8276,
29
(
10
),
1424
.
49.
Dawes
,
W. N.
, 1992, “
The Simulation of 3-Dimensional Viscous-Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology
,”
ASME J. Turbomach.
0889-504X,
114
(
3
), pp.
528
537
.
50.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
,
A. C.
, 1989, “
Vode—A Variable-Coefficient Ode Solver
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
10
(
5
), pp.
1038
1051
.
51.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1991, “
CHEMKIN-II: A FORTAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, SAND89–8009
,” Sandia National Laboratories, Report No. SAND89-8009.
52.
Lukachko
,
S. P.
,
Kirk
,
D. R.
, and
Waitz
,
I. A.
, 2003, “
Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors, Part I: Potential for Secondary Combustion of Partially Reacted Fuel
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
742
750
.
You do not currently have access to this content.