Experimental and kinetic modeling of kerosene-type fuels is reported in the present work with special emphasis on the low-temperature oxidation phenomenon relevant to gas turbine premixing conditions. Experiments were performed in an atmospheric pressure, tubular flow reactor to measure ignition delay time of kerosene (fuel–oil No. 1) in order to study the premature autoignition of liquid fuels at gas turbine premixing conditions. The experimental results indicate that the ignition delay time decreases exponentially with the equivalence ratio at fuel-lean conditions. However, for very high equivalence ratios (>2), the ignition delay time approaches an asymptotic value. Equivalence ratio fluctuations in the premixer can create conditions conducive for autoignition of fuel in the premixer, as the gas turbines generally operate under lean conditions during premixed prevaporized combustion. Ignition delay time measurements of stoichiometric fuel–oil No. 1∕air mixture at 1 atm were comparable with that of kerosene type Jet-A fuel available in the literature. A detailed kerosene mechanism with approximately 1400 reactions of 550 species is developed using a surrogate mixture of n-decane, n-propylcyclohexane, n-propylbenzene, and decene to represent the major chemical constituents of kerosene, namely n-alkanes, cyclo-alkanes, aromatics, and olefins, respectively. As the major portion of kerosene-type fuels consists of alkanes, which are relatively more reactive at low temperatures, a detailed kinetic mechanism is developed for n-decane oxidation including low temperature reaction kinetics. With the objective of achieving a more comprehensive kinetic model for n-decane, the mechanism is validated against target data for a wide range of experimental conditions available in the literature. The data include shock tube ignition delay time measurements, jet-stirred reactor reactivity profiles, and plug-flow reactor species time–history profiles. The kerosene model predictions agree fairly well with the ignition delay time measurements obtained in the present work as well as the data available in the literature for Jet A. The kerosene model was able to reproduce the low-temperature preignition reactivity profile of JP-8 obtained in a flow reactor at 12 atm. Also, the kerosene mechanism predicts the species reactivity profiles of Jet A-1 obtained in a jet-stirred reactor fairly well.

1.
Lefebvre
,
A. H.
, 1993, “
Combustion Fundamentals
,”
Gas Turbine Combustion
,
Taylor & Francis
,
Bristol, PA
, p.
62
.
2.
Lee
,
J. C. Y.
,
Malte
,
P. C.
, and
Benjamin
,
M. A.
, 2001, “
Low NOx Combustion for Liquid Fuels: Atmospheric Pressure Experiments Using a Staged Prevaporizer-Premixer
,”
Proceedings ASME Turbo Expo 2001
, 2001-GT-0081, New Orleans, LA, June 4–7, 2001.
3.
Naidja
,
A.
,
Krishna
,
C. R.
,
Butcher
,
T.
, and
Mahajan
,
D.
, 2003, “
Cool Flame Partial Oxidation and Its Role in Combustion and Reforming of Fuels Cell Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
155
191
.
4.
Westbrook
,
C. K.
, 2000, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1563
1577
.
5.
Bacha
,
J.
,
Barnes
,
F.
,
Franklin
,
M.
,
Gibbs
,
L.
,
Hemighaus
,
G.
,
Hogue
,
N.
,
Lesnini
,
D.
,
Lind
,
J.
,
Maybury
,
J.
, and
Morris
,
J.
, 2000,
Aviation Fuels Technical Review
, Chevron Products Company,
Chevron U.S.A. Inc.
, San Ramon, CA.
6.
Edwards
,
T.
, and
Maurice
,
L. Q.
, 2001, “
Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels
,”
J. Propul. Power
0748-4658,
17
, pp.
461
466
.
7.
Sobel
,
D. R.
, and
Spadaccini
,
L. J.
, 1997, “
Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion
,”
J. Eng. Gas Turbines Power
0742-4795,
119
,
344
351
.
8.
Huang
,
H.
,
Spadaccini
,
L. J.
, and
Sobel
,
D. R.
, 2002, “
Fuel-Cooled Thermal Management for Advanced Aero Engines
,”
Proceedings ASME Turbo Expo 2002
, GT-2002-30070, Amsterdam, Netherlands, June 3–6, 2002.
9.
Roubaud
,
A.
,
Minetti
,
R.
, and
Sochet
,
L. R.
, 2000, “
Oxidation and Combustion of Low Alkylbenzenes at High Pressure: Comparative Reactivity and Auto-Ignition
,”
Combust. Flame
0010-2180,
121
, pp.
535
541
.
10.
Griffiths
,
J. F.
, and
Mohamed
,
C.
, 1997, “
Experimental and Numerical Studies of Oxidation Chemistry and Spontaneous Ignition Phenomena
,”
Comprehensive Chemical Kinetics
,
M. J.
Pilling
ed.,
Elsevier
,
Amsterdam
, Vol.
35
.
11.
Dagaut
,
P.
,
Reuillon
,
M.
,
Boettner
,
J.
, and
Cathonnet
,
M.
, 1994, “
Kerosene Combustion at Pressures Up to 40atm: Experimental Study and Detailed Chemical Kinetic Modeling
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
919
926
.
12.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
, 1996, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
28
, pp.
781
789
.
13.
Agosta
,
A.
,
Lenhert
,
D. B.
,
Miller
,
D. L.
, and
Cernansky
,
N. P.
, 2003, “
Development and Evaluation of a JP-8 Surrogate that Models Preignition Behavior
,”
Proceedings of the 3rd Joint Meeting
, Chicago, IL, March 16–19, 2003,
The Combustion Institute
.
14.
Dagaut
,
P.
, 2002, “
On the Kinetics of Hydrocarbons Oxidation From Natural Gas to Kerosene and Diesel Fuel
,”
Phys. Chem. Chem. Phys.
1463-9076,
4
, p.
2079
2094
.
15.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Sarofim
,
A. F.
,
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
, 2002, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
0010-2202,
174
, pp.
399
417
.
16.
Mawid
,
M. A.
,
Park
,
T. W.
,
Sekar
,
B.
, and
Arana
,
C. A.
, 2003, “
Development of Detailed Chemical Kinetic Mechanisms for Ignition∕oxidation of JP-8∕JET-A∕JP-7 Fuels
,”
Proceedings ASME Turbo Expo 2003, GT2003–38932
, Atlanta, GA, June 16–19, 2003.
17.
Lindstedt
,
R. P.
, and
Maurice
,
L. Q.
, 2000, “
Detailed Chemical-Kinetic Model for Aviation Fuels
,”
J. Propul. Power
0748-4658,
16
, pp.
187
195
.
18.
Bikas
,
G.
, and
Peters
,
N.
, 2001, “
Kinetic Modeling of n-Decane Combustion and Autoignition
,”
Combust. Flame
0010-2180,
126
, pp.
1456
1475
.
19.
Battin-Leclerc
,
F.
,
Fournet
,
R.
,
Glaude
,
P. A.
,
Warth
,
V.
,
Come
,
G. M.
, and
Scacchi
,
G.
, 2000, “
Modeling of the Gas-Phase Oxidation of n-Decane from 550to1600K
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1597
1605
.
20.
Dryer
,
F. L.
, 1991, “
The Phenomenology of Modeling Combustion Chemistry
,”
Fossil Fuel Combustion
,
W.
Bartok
and
A. F.
Sarofim
, eds.
Wiley
,
New York
.
21.
Zhao
,
Z.
,
Li
,
J.
,
Kazakov
,
A.
,
Dryer
,
F. L.
, and
Zeppieri
,
S. P.
, 2005, “
Burning Velocities and a High-Temperature Skeletal Kinetic Model for n-Decane
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
89
106
.
22.
Zeppieri
,
S. P.
,
Klotz
,
S. D.
, and
Dryer
,
F. L.
, 2000, “
Modeling Concepts for Large Carbon Number Alkanes: A Partially Reduced Skeletal Mechanism for n-Decane Oxidation and Pyrolysis
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1587
1595
.
23.
Glaude
,
P. A.
,
Warth
,
V.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
,
Scacchi
,
G.
, and
Come
,
G. M.
, 1998, “
Modeling of the Oxidation of n-Octane and n-Decane Using an Automatic Generation of Mechanisms
,”
Int. J. Chem. Kinet.
0538-8066,
30
, pp.
949
959
.
24.
Lemaire
,
O.
,
Ribaucour
,
M.
,
Carlier
,
M.
, and
Minetti
,
R.
, 2001, “
The Production of Benzene in the Low-Temperature Oxidation of Cyclohexane, Cyclohexene, and Cyclohexa-1,3-diene
,”
Combust. Flame
0010-2180,
127
, pp.
1971
1980
.
25.
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
, 2003, “
A Wide Range Kinetic Modeling Study of the Pyrolysis and Combustion of Naphthenes
,”
Combust. Flame
0010-2180,
132
, pp.
533
544
.
26.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 1998, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
0010-2180,
114
, pp.
149
177
.
27.
Benson
,
S. W.
, 1968,
Thermochemical Kinetics
,
Wiley
,
New York
.
28.
Cohen
,
N.
, 1991, “
Are Reaction Rate Coefficients Additive? Revised Transition State Theory Calculations for Alkane+OH Reactions
,”
Int. J. Chem. Kinet.
0538-8066,
23
, pp.
397
417
.
29.
Ribaucour
,
M.
,
Minetti
,
R.
,
Sochet
,
L. R.
,
Curran
,
J. H.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2000, “
Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1671
1678
.
30.
Gokulakrishnan
,
P.
,
McLellan
,
P. J.
,
Lawrence
,
A. D.
, and
Grandmaison
,
E. W.
, 2005, “
Kinetic Analysis of NO-Sensitized Methane Oxidation
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
3683
3692
.
31.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1990, “
Senkin: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis
,” Report No. SAND87-8248, Sandia National Laboratories, Livermore, CA.
32.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
, 1986, “
PSR: A FORTRAN Program for Modeling Well-Stirred Reactors
,” Report No. SAND86-8209, Sandia National Laboratories, Livermore, CA.
33.
Freeman
,
G.
, and
Lefebvre
,
A. H.
, 1984, “
Spontaneous Ignition Characteristics of Gaseous Hydrocarbon–Air Mixtures
,”
Combust. Flame
0010-2180,
58
, pp.
153
162
.
34.
Spadaccini
,
L. J.
, and
TeVelde
,
J. A.
, 1980, “
Autoignition Characteristics of Aircraft-Type Fuels
,” Report No. NASA CR-159886, United Technologies Research Center, East Hartford, CT.
35.
Yetter
,
R. A.
,
Dryer
,
F. L.
, and
Rabitz
,
H.
, 1991,
Combust. Sci. Technol.
0010-2202,
79
, pp.
129
140
.
36.
Gokulakrishnan
,
P.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2003, “
Comparison of Numerical and Experimental Kinetic Data for Flow Reactor Systems: Mixing Effects
,”
Proceedings of the 3rd Joint Meeting
, Chicago, IL, March 16–19, 2003, The Combustion Institute.
37.
Horning
,
D. C.
, 2001, “
A Study of the High-Temperature Autoignition and Thermal Decomposition of Hydrocarbons
,” Report No. TSD-135, Department of Mechanical Engineering,
Stanford University
, Stanford, CA.
38.
Ciezki
,
H.
, and
Adomeit
,
G.
, 1993, “
Shock-Tube Investigation of Self-Ignition of n-heptane–Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
0010-2180,
93
, pp.
421
433
.
39.
Lifshitz
,
A.
, 2001, “
Chemical and Combustion Kinetics
,” in
Handbook of Shock Waves
,
Academic
,
New York
, Vol.
3
.
You do not currently have access to this content.