This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MICROFAVA (micromechanical fatigue variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α+β Ti-alloy Ti-6Al-4V.

1.
Chan
,
K. S.
, and
Torng
,
T.-Y.
, 1996, “
A Probabilistic Treatment of Microstructural Effects on Fatigue Crack Growth of Large Cracks
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, pp.
379
386
.
2.
Tanaka
,
K.
, and
Mura
,
T.
, 1981, “
A Dislocation Model for Fatigue Crack Initiation
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
97
103
.
3.
Chan
,
K. S.
, 2003, “
A Microstructure-Based Fatigue Crack Initiation Model
,”
Metall. Mater. Trans. A
1073-5623,
34
, pp.
43
58
.
4.
Chan
,
K. S.
, 1993, “
Scaling Laws for Fatigue Crack Growth of Large Cracks in Steels
,”
Metall. Trans. A
0360-2133,
24
, pp.
2473
2486
.
5.
Chan
,
K. S.
, and
Enright
,
M. P.
, 2002, “
Physically-based Models for Predicting Fatigue Life Variability in Ni-Based Superalloys
,”
Proceedings of Modeling the Performance of Engineering Structure Materials III
,
T.
Srivatsan
,
D.
Lesuer
, and
E.
Taleff
, eds.,
TMS
,
Warrendale, PA
, pp.
135
142
.
6.
Chan
,
K. S.
, and
Enright
,
M. P.
, 2003, “
Application of Microstructure-based Fatigue Models to Component Life Prediction
,”
Fatigue 2003
,
M. R.
Bache
et al.
, eds.,
Engineering Integrity Society
, Sheffield, UK, pp.
39
48
.
7.
Enright
,
M. P.
, and
Chan
,
K. S.
, 2004, “
Extension of a Microstructure-based Fatigue Crack Growth Model for Predicting Fatigue Life Variability
,”
J. ASTM Int.
1546-962X,
1
(
8
), Paper No. JAI11566.
8.
SwRI
, 2004, DARWIN®,
Design Assessment of Reliability with INspection®, Software Package, Ver. 5.1, Southwest Research Institute, San Antonio.
9.
Chan
,
K. S.
, 2004, “
Variability of Large-Crack Fatigue Crack Growth Thresholds in Structural Alloys
,”
Metall. Mater. Trans. A
1073-5623,
35
, pp.
3721
3735
.
10.
Newman
,
J. C.
, Jr.
, 1984, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
0376-9429,
24
, pp.
R131
R135
.
11.
Suresh
,
S.
, 1985, “
Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models
,”
Metall. Trans. A
0360-2133,
16
, pp.
249
260
.
12.
Enright
,
M. P.
, and
Wu
,
Y. T.
, 2003, “
Probabilistic Fatigue Life Sensitivity Analysis of Titanium Rotors
,”
Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Non-Deterministic Approaches Forum
, Atlanta, April 3–6, AIAA Paper No. 2000-1647.
13.
Leverant
,
G. R.
, 2000, “
Turbine Rotor Material Design - Final Report
,” DOT/FAA/AR-00/64,
Federal Aviation Administration
, Washington, DC.
14.
Wu
,
Y. T.
,
Enright
,
M. P.
, and
Millwater
,
H. R.
, 2002, “
Probabilistic Methods for Design Assessment of Reliability With Inspection
,”
AIAA J.
0001-1452,
40
(
5
), pp.
937
946
.
15.
Enright
,
M. P.
,
Huyse
,
L.
,
McClung
,
R. C.
, and
Millwater
,
H. R.
, 2004, “
Probabilistic Methodology for Life Prediction of Aircraft Turbine Rotors
,”
Proceedings, 9th Biennial ASCE Aerospace Division International Conference on Engineering, Construction and Operations in Challenging Environments - Earth & Space
,
R. B.
Malla
and
A.
Maji
, eds., Houston, March 7–10, ASCE, Reston, VA, pp.
453
460
.
16.
Chan
,
K. S.
,
Enright
,
M. P.
, and
Kung
,
J. S.
, 2005, “
MicroFaVa: A Micromechanical Code for Predicting Fatigue Life Variability
,”
Materials Damage Prognosis
,
J. M.
Larsen
,
L.
Christodoulou
,
J. R.
Calcaterra
,
M. L.
Dent
,
M. M.
Derriso
,
W. J.
Hardman
,
J. W.
Jones
, and
S. M.
Russ
, eds.,
TMS
, Warrendale, PA, pp.
135
142
.
17.
Bellows
,
R. S.
,
Muju
,
S.
, and
Nicholas
,
T.
, 1999, “
Validation of the Step Test Method for Generating Haigh Diagrams for Ti-6Al-4V
,”
Int. J. Fatigue
0142-1123,
21
, pp.
687
697
.
18.
Sheldon
,
J. W.
,
Bain
,
K. R.
, and
Donald
,
J. K.
, 1999, “
Investigation of the Effects of Shed-Rate, Initial Kmax, and Geometric Constraint on ΔKth in Ti-6Al-4V at Room Temperature
,”
Int. J. Fatigue
0142-1123,
21
, pp.
733
741
.
19.
Marci
,
G.
, 1994, “
Comparison of Fatigue Crack Propagation Thresholds of Two Ti Turbine-Disk Materials
,”
Int. J. Fatigue
0142-1123,
16
, pp.
409
412
.
20.
Döker
,
H.
, and
Marci
,
G.
, 1983, “
Threshold Range and Opening Stress Intensity Factor in Fatigue
,”
Int. J. Fatigue
0142-1123,
5
, pp.
187
191
.
21.
Boyce
,
B. L.
, and
Ritchie
,
R. O.
, 2001, “
Effect of Load Ratio and Maximum Stress Intensity on the Fatigue Threshold in Ti-6Al-4V
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
129
147
.
22.
Raizenne
,
M. D.
, 1987, “
Fatigue Crack Growth Rate Data for AGARD TX114 Engine Disc Cooperative Test Programme
,” Laboratory Memorandum ST-479, National Aeronautical Establishment, Ottowa, Canada, September.
23.
Mom
,
A. J. A.
, and
Raizenne
,
M. D.
, 1988, “
AGARD Engine Disc Cooperative Test Programme
,” AGARD Report No. 766, August.
24.
1994,
Damage Tolerant Design Handbook
,
Purdue University
, West Lafayette, Vol.
3
, WL-TR-94-4043.
25.
U.S. Department of Transportation, Federal Aviation Administration
, 2001, “
Advisory Circular—Damage Tolerance for High Energy Turbine Engine Rotors
,” AC33.14-1, Washington, DC, January.
You do not currently have access to this content.