A continuous method is presented for representing the mode interaction that occurs in frequency veering in terms of the nominal sector modes of a cyclic symmetric bladed disk model constrained at a reference interblade phase angle. Using this method, the effect of frequency veering on the mode shapes can be considered in the context of the generalized forces exciting the system and the modal response of the bladed disk. It is shown that in a blade-dominated family of modes, the transfer of modal energy to the disk in the veering results in a lower generalized force exciting the mode as well as reduced response amplitude in the blade. For the disk-dominated modes, the sharing of modal energy with the blades can lead to the disk being excited by aerodynamic loading. These effects can have important implications for predicting and interpreting forced response in bladed disks. Numerical examples are provided to illustrate these concepts.

1.
Ramaswamy
,
R.
, and
Marcus
,
R. A.
, 1981, “
Perturbative Examination of Avoided Crossings
,”
Journal of Chemistry and Physics
,
74
, pp.
1379
1384
.
2.
Crandall
,
S. H.
, and
Yeh
,
N. A.
, 1989, “
Automatic Generation of Component Modes for Rotordynamic Substructures
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
111
, p.
6
10
.
3.
Jei
,
Y.-G.
, and
Lee
,
C.-W.
, 1992, “
Does Curve Veering Occur in the Eigenvalue Problem of Rotors?
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
32
36
.
4.
Kuttler
,
J. R.
, and
Sigillito
,
V. G.
, 1981, “
On Curve Veering
,”
J. Sound Vib.
0022-460X,
75
(
4
), pp.
585
588
.
5.
Perkins
,
N. C.
, and
Mote
,
C. D.
, 1986, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
0022-460X,
106
(
3
), pp.
451
463
.
6.
Balmés
,
E.
, 1993, “
High Modal Density, Curve Veering, Localization: A Different Perspective on the Structural Response
,”
J. Sound Vib.
0022-460X,
161
, (
2
), pp.
358
363
.
7.
Leissa
,
A. W.
, 1974, “
On a Curve Veering Aberration
,”
Z. Angew. Math. Phys.
0044-2275,
25
, pp.
99
111
.
8.
Kenyon
,
J. A.
, 1999, “
Investigation of Curve Veering Using Computational and Experimental Techniques
,”
Proceedings of the 40th AIAA∕ASME∕ASCE∕AHS∕ASC Structures, Structural Dynamics, and Materials Conference, AIAA, St. Louis, Missouri
, pp.
1550
1558
.
9.
Afolabi
,
D.
, and
Mehmed
.
O.
, 1994, “
On Curve Veering and Flutter of Rotating Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
702
708
.
10.
Castanier
,
M. P.
,
Óttarsson
,
G.
, and
Pierre
,
C.
, 1997, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
439
447
.
11.
Bladh
,
R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
, 2002, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
311
324
.
12.
Kenyon
,
J. A.
,
Cross
,
C. J.
, and
Minkiewicz
,
G. R.
, 2000, “
Mechanical Coupling Effects on Turbomachine Mistuned Response
,”
J. Propul. Power
0748-4658,
16
(
6
), pp.
1149
1154
.
13.
Yang
,
M.-T.
, and
Griffin
,
J. H.
, 1997, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
647
650
.
14.
Marugabandhu
,
P.
, and
Griffin
,
J. H.
, 2003, “
A Reduced-Order Model for Evaluating the Effect of Rotational Speed on the Natural Frequencies and Mode Shapes of Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
772
776
.
15.
Pierre
,
C.
, 1988, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
0022-460X,
126
(
3
), pp.
485
502
.
16.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
, 1991, “
Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,”
J. Sound Vib.
0022-460X,
150
(
3
), pp.
485
500
.
17.
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Feiner
,
D. M.
, 2003, “
Maximum Bladed Disk Forced Response from Distortion of a Structural Mode
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
352
363
.
18.
Yang
,
M.-T.
, and
Griffin
,
J. H.
, 2001, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
893
900
.
19.
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Kim
,
N. E.
, 2004, “
Frequency Veering Effects on Mistuned Bladed Disk Forced Response
,”
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Kim
,
N. E.
, 2004
J. Propul. Power
0748-4658,
20
(
5
), pp.
863
870
.
20.
Bladh
.
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
, 2003, “
Effects of Multistage Coupling and Disk Flexibility on Mistuned Bladed Disk Dynamics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
121
130
.
21.
Thomas
,
D. L.
, 1979, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
, pp.
81
102
.
You do not currently have access to this content.