In this paper the complete set of modified Reynolds’ equations for the active lubrication is presented. The solution of such a set of equations allows the determination of stiffness and damping coefficients of actively lubricated bearings. These coefficients are not just dependent on Sommerfeld number, as it would be the case of conventional hydrodynamic bearings, but they are also dependent on the excitation frequencies and gains of the control loop. Stiffness as well as damping coefficients can be strongly influenced by the choice of the control strategy, servo valve dynamics and geometry of the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the bearing housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically investigated in the present paper, i.e., using actively lubricated bearings. By choosing a suitable set of control gains, it is possible not only to increase the stability of the rotor-bearing system, but also enlarge its operational frequency range.

1.
Vance
,
J. M.
, and
Li
,
J.
,
1996
, “
Test Results of a New Damper Seal for Vibration Reduction in Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
118
, pp.
843
846
.
2.
San Andre´s
,
L.
, and
Lubell
,
D.
,
1998
, “
Imbalance Response of a Test Rotor Supported on Squeeze Film Dampers
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
397
404
.
3.
El-Shafei
,
A.
, and
Hathout
,
J. P.
,
1995
, “
Development and Control of HSFDs for Active Control of Rotor-Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
757
766
.
4.
Ulbrich H., and Althaus, J., 1989, “Actuator Design for Rotor Control,” 12th Biennial ASME Conference on Vibration and Noise, Montreal, Sept. 17–21, ASME, New York, pp. 17–22.
5.
Althaus, J., Stelter, P., Feldkamp, B., and Adam, H., 1993, “Aktives hydraulisches Lager fu¨r eine Schneckenzentrifuge,” Schwingungen in rotierenden Machinen II, H. Irretier, R. Nordmann, and H. Springer, eds., Vieweg-Verlag, Braunschweig, Germany, 2, pp. 28–36.
6.
Santos
,
I. F.
,
1995
, “
On the Adjusting of the Dynamic coefficients of Tilting-Pad Journal Bearings
,”
STLE Tribol. Trans.
,
38
(
3
), pp.
700
706
.
7.
Goodwin, M. J., Boroomand, T., and Hooke, C. J., 1989, “Variable Impedance Hydrodynamic Journal Bearings for Controlling Flexible Rotor Vibrations,” 12th Biennial ASME Conference on Vibration and Noise, Montreal, Sept. 17–21, ASME, New York, pp. 261–267.
8.
Santos, I. F., 1994, “Design and Evaluation of Two Types of Active Tilting-Pad Journal Bearings,” IUTAM Symposium on Active Control of Vibration, Bath, England, Kluwer, Dordreicht, The Netherlands, pp. 79–87.
9.
Santos
,
I. F.
, and
Russo
,
F. H.
,
1998
, “
Tilting-Pad Journal Bearings with Electronic Radial Oil Injection
,”
ASME J. Tribol.
,
120
, pp.
583
594
.
10.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
1999
, “
THD Analysis in Tilting-Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication
,”
ASME J. Tribol.
,
121
, pp.
892
900
.
11.
Santos, I. F., and Scalabrin, A., 2000, “Control System Design for Active Lubrication with Theoretical and Experimental Examples,” ASME Paper No. 2000-GT-643.
12.
Bently, D. E., Grant J. W., and Hanifan P., 1999, “Active Controlled Hydrostatic Bearings for a New Generation of Machines,” ASME Paper No. 2000-GT-354.
13.
Osman
,
T. A.
,
Nada
,
G. S.
, and
Safar
,
Z. S.
,
2001
, “
Static and Dynamic Characteristics of Magnetized Journal Bearings Lubricated With Ferrofluid
,”
Tribol. Int.
,
34
(
6
), pp.
369
380
.
14.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
2001
, “
Influence of Orifice Distribution on the Thermal and Static Properties of Hybridly Lubricated Bearings
,”
Int. J. Solids Struct.
,
38(10–13
), pp.
2069
2081
.
15.
Nicoletti, R., and Santos, I. F., 2001, “Vibration Control of Rotating Machinery Using Active Tilting-Pad Bearings,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, July 8–11, pp. 589–594.
16.
Santos, I. F., Scalabrin A., and Nicoletti, R., 2001, “Ein Beitrag zur aktiven Schmierungstheorie,” Schwingungen in rotierenden Machinen VI, edited by H. Irretier, R. Nordmann, and H. Springer, eds., Vieweg-Verlag, Braunschweig, Germany, 5, pp. 21–30.
17.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Element
,”
J. Eng. Ind.
,
98
, pp.
593
600
.
18.
Lund, J. W., and Thomsen, K. K., 1978, “A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings,” Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, S. M. Rhode, P. E. Allaire, and C. J. Maday, eds., ASME, New York, pp. 1–28.
19.
Ghosh
,
M. K.
,
Guha
,
S. K.
, and
Majumdar
,
B. C.
,
1989
, “
Rotordynamic Coefficients of Multirecess Hybrid Journal Bearings—Part I
,”
Wear
,
129
, pp.
245
259
.
20.
Hamrock, B. J., 1994, Fundamentals of Fluid Film Lubrication, Mechanical Engineering Series, McGraw-Hill, New York.
21.
Allaire
,
P. E.
,
Parsell
,
J. A.
, and
Barret
,
L. E.
,
1981
, “
A Pad Perturbation Method for the Dynamic Coefficients of Tilting Pad Journal Bearings
,”
Wear
,
72
, pp.
29
44
.
22.
Scha¨fer
,
K. D.
,
1977
, “
Elektrohydraulische regelsysteme
,”
MOOG Bulletin D
,
1
(
180
),
WA 2000 N
WA 2000 N
.
23.
Althaus, J., 1991, Eine aktive hydraulische Lagerung fu¨r Rotorsysteme, Fortschritt-Berichte VDI, Series 11, N. 154, VDI-Verlag GmbH.
24.
Russo, F. H., 1999, “Identification of Hybrid Tilting-Pad Bearings Dynamic Properties—Theory and Experiment,” Master thesis, State University of Campinas, Brazil (in Portuguese).
25.
Someya, T., Journal Bearing Data Book, Springer-Verlag, Berlin.
26.
API, 1995, 617—Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries, 6, American Petroleum Institute, Washington, DC.
You do not currently have access to this content.