Abstract

An experimental study was done to determine the diameter and velocity of blood drops falling on a surface by measuring the size of bloodstains they produced and counting the number of radial spines projecting from them. Bloodstains were formed by releasing drops of pig blood with a range of diameters (3.0–4.3 mm) and impact velocities (2.4–4.9 m/s), onto four different flat surfaces (glass, steel, plastic, paper) with varying roughness (0.03–2.9 µm). High-speed photography was used to record drop impact dynamics. Bloodstain diameters and the number of spines formed around the rim of stains increased with impact velocity and drop diameter. Increasing surface roughness reduced stain diameter and promoted merging of spines, diminishing their number. Equations are presented that explicitly relate drop diameter and impact velocity to measurements of stain diameter and number of spines.

References

1.
MacDonell
HL
,
Bialousz
LF
.
Flight characteristics and stain patterns of human blood
.
Washington, DC
:
National Institute of Law Enforcement and Criminal Justice, US Dept of Justice, Law Enforcement Assistance Administration
,
1971
.
2.
Pizzola
PA
,
Roth
S
,
De Forest
PR
.
Blood droplet dynamics—I
.
J Forensic Sci
 0022-1198
1986
;
31
(
1
):
36
49
.
3.
Laber
TL
.
Blood classification
.
IABPA News
1985
;
2
(
4
).
4.
Balthazard
V
,
Piedelievre
R
,
Desoille
H
,
DeRobert
L
.
Study of projected drops of blood
.
Ann Med Leg Criminol Police Sci Toxicol
 0376-2440
1939
;
19
:
265
323
.
5.
Rein
M
.
Phenomena of liquid drop impact on solid and liquid surfaces
.
Fluid Dyn Res
 0169-5983 https://doi.org/10.1016/0169-5983(93)90106-K
1993
;
12
:
61
93
.
6.
Pasandideh-Fard
M
,
Bhola
R
,
Chandra
S
,
Mostaghimi
J
.
Capillary effects during droplet impact o a solid surface
.
Phys Fluids
 0031-9171 https://doi.org/10.1063/1.1761278
1996
;
8
:
650
9
.
7.
Allen
RF
.
The role of surface tension in splashing
.
J Colloid Interface Sci
 0021-9797 https://doi.org/10.1016/0021-9797(75)90126-5
1975
;
51
(
2
):
350
1
.
8.
Kim
HY
,
Feng
ZC
,
Chun
JH
.
Instability of a liquid jet emerging from a droplet upon collision with a solid surface
.
Phys Fluids
 0031-9171 https://doi.org/10.1063/1.1692516
2000
;
12
:
531
41
.
9.
Mehdizadeh
NZ
,
Chandra
S
,
Mostaghimi
J
.
Formation of fingers around the edges of a drop hitting a metal plate with high velocity
.
J Fluid Mechanics
 0022-1120 https://doi.org/10.1017/S0022112004009310
2004
;
510
:
353
73
.
10.
Wonder
AY
.
Blood dynamics
.
San Diego
:
Academic Press
,
2001
.
11.
Casson
S
,
Kurland
G
.
Viscometry of human blood for shear rates of 0-100,000 s-1
.
Nature
 0028-0836
1965
;
206
:
617
8
.
12.
Raymond
MA
,
Smith
ER
,
Liesegang
J
.
The physical properties of blood—forensic considerations
.
Sci Justice
 1355-0306
1996
;
36
(
3
):
153
60
.
13.
Laurent
A
,
Durussek
JJ
,
Dafaux
J
,
Penhouet
L
,
Bailly
AL
,
Bonneau
M
, et al
.
Effect of contrast media on blood rheology: comparison in human, pig, and sheep
.
Cardiovasc Intervent Radiol
 0174-1551
1999
;
22
:
62
6
.
14.
Wickham
JJ
,
Bauersachs
RM
,
Wenby
RB
,
Sowernino-Coker
S
,
Meiselman
HJ
,
Elsner
R
.
Red cell aggregation and viscoelasticity of blood from seal, swine and man
.
Biorheology
 0006-355X
1990
;
27
:
191
204
.
15.
Willis
C
,
Piranian
AK
,
Donaggio
JR
,
Barnett
RJ
,
Rowe
WF
.
Errors in the estimation of the distance of fall and angles of impact blood drops
.
Forensic Sci Int
 0379-0738
2001
;
123
(
1
):
1
4
.
16.
Gonzalez
RC
,
Woods
RE
.
Digital image processing
.
Reading
:
Addison Wesley
,
1992
.
17.
Thoroddsen
ST
,
Sakakibara
J
.
Evolution of the fingering pattern of an impacting drop
.
Phys Fluids
 0031-9171 https://doi.org/10.1063/1.1762290
1998
;
10
:
1359
74
.
This content is only available via PDF.
You do not currently have access to this content.