Abstract

The luminol test is routinely used in forensic serology to locate blood traces and identify blood stains not visible to the naked eye; its sensitivity is reported as ranging from 1:100.000 to 1:5.000.000. To evaluate the possibility of correlating the post-mortem interval with blood remnants in bone tissue, the luminol test was performed on 80 femurs with a known time of death, grouped in five classes. Powdered bone (30 mg) was recovered from compact tissue of the mid-shaft of each femur and was treated with 0.1 mL of Luminol solution (Sirchie Finger Print Laboratories, Inc.). The reactions were observed in a dark room and filmed by a TV camera equipped with a recording tape. An intense chemiluminescence was observed after a few seconds in all 20 femurs with a PMI ranging from 1 month to 3 years. On the 20 femurs with a PMI ranging from 10–15 years, a clear chemiluminescence was visible with the naked eye in 80% of the sample. Among the 20 femurs with a PMI ranging from 25 to 35 years, a weaker chemiluminescence appeared in 7 femurs (33% of the sample). In the 10 femurs with a PMI ranging from 50 to 60 years, a faint reaction was observed only in a single femur. In none of the ten femurs with a PMI over 80 years was chemiluminescence observed. The image of each reaction was computerized and analyzed for gray scale. The results of image analysis show a possible quantitative relationship between the PMI and luminol chemiluminescence in powdered bone.

References

1.
Knight
B
,
Lauder
I
.
Methods of dating skeletal remains
.
Hum Biol
1969
;
41
:
322
-
41
.
2.
Krogman
W M
,
Iscan
M Y
.
The human skeleton in forensic medicine
.
Springfield
,
Charles C Thomas
,
1986
;
15
-
49
.
3.
Berg
S
.
The determination of bone-age
. In:
Lundquist
F
, Editor.
Methods of forensic Science
,
New York, Wiley and Sons
,
1963
;
231
-
52
.
4.
Behrensmeyer
A K
.
Taphonomic and ecologic information from bone weathering
.
Paleobiol
1978
;
4
:
150
-
62
.
5.
Hare
P E
.
Organic geochemistry of bone and its relation to the survival of bone in the natural environment
. In:
Behrensmeyer
A K
,
Hill
A P
, Editor.
Fossils in the making
,
Chicago
,
1980
;
208
-
19
.
6.
Gordon
C C
,
Buikstra
J E
.
Soil pH. Bone preservation and sampling bias at mortuary sites
.
Am Antiquity
1981
;
46
(
3
):
566
-
71
.
7.
Piepenbrink
H
.
Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation
.
J Arch Sci
1986
;
13
:
417
-
30
.
8.
Dollerup
E
.
Chemical analyses and microradiographic investigations on bone biopsies from cases of osteoporosis and osteomalacia as compared with normal
. In:
Blackwood
H JJ
. Editor.
Bone and Tooth Symposium
.
Pergamon Press
,
Oxford
,
1964
;399.
9.
Schultz
M
.
Microscopic investigation of excavated skeletal remains: a contribution of paleopathology and forensic medicine
. In:
Haglund
W D
,
Sorg
M H
, Editors.
Forensic Taphonomy
,
The postmortem fate of human remains. CRC Press
,
1997
;
201
-
22
.
10.
Yoshino
M
,
Kimijima
T
,
Miyasaka
S
,
Sato
H
,
Seta
S
.
Microscopical study on estimation of time since death in skeletal remains
.
Forensic Sci Int
1991
;
49
:
143
-
58
.
11.
Berg
S
,
Specht
W
,
Untersuchungen zur Bestimmung der Liegezeit von Skeletteilen
.
Dtsch Z Ges Gerichtl Med
1958
;
47
:
209
-
41
.
12.
Chibnall
A C
,
Rees
M W
,
Williams
E F
.
Total nitrogen content of egg albumin and other proteins
.
Biochem J
1943
;
37
:
354
-
9
.
13.
Dutra
F R
.
Identification of person and determination of cause of death from skeletal remains
.
Arch Pathol
1944
;
38
:
339
-
49
.
14.
Camps
F E
,
Purchase
W B
.
Practical forensic medicine
.
Hutchinson, London
,
1956
;
170
-
7
.
15.
Cattaneo
C
,
Gelsthorpe
K
,
Phillips
P
,
Sokol
R J
.
Reliable identification of human albumin in ancient bone using ELISA and monoclonal antibodies
.
Am J Phys Anthropol
1992
;
87
:
365
-
72
.
16.
Gangl
I
.
Alterbestimmung fossiler Knochenfunde auf chemische Wege
.
Ost Chem Ztng
1936
;
39
:
79
-
82
.
17.
Castellano
M A
,
Villanueva
E C
,
von Frenckel
R
.
Estimating the date of bone remains: a multivariate study
.
J Forensic Sci
1984
;
29
:
527
-
34
.
18.
Taylor
R E
,
Suchey
J M
,
Payen
L A
,
Slota
P J
.
The use of radiocarbon (14C) to identify human skeletal materials of forensic science interest
.
J Forensic Sci
1989
;
34
(
5
):
1196
-
205
.
19.
MacLaughlin-Black
S M
,
Herd
R JM
,
Willson
K
,
Myers
M
,
West
I E
.
Strontium-90 as an indicator of time since death: a pilot investigation
.
Forensic Sci Int
1992
;
57
:
51
-
6
.
20.
Knight
B
.
Methods of dating skeletal remains
.
Med Sci Law
1969
;
9
:
247
-
52
.
21.
Facchini
F
,
Pettener
D
.
Chemical and physical methods in dating human skeletal remains
.
Am J Phys Anthropol
1977
;
47
:
65
-
70
.
22.
Specht
W
.
The chemiluminescence of hemin as a means of finding and recognizing blood traces of forensic importance
.
Angew Chem
1937
;
50
:
155
-
7
.
23.
Proescher
F
,
Moody
A M
.
Detection of blood by means of chemiluminescence
.
J Lab Clin Med
1939
;
24
:
1183
-
9
.
24.
Tamanushi
B
,
Akiyama
H
.
Mechanism of the chemiluminescence of 3-Aminophtal Hydrazide
.
Z Phys Chem
1938
;
B38
:
400
-
6
.
25.
Grundermann
K D
.
Chemiluminescence in organic compounds
.
Angew Chem Int Ed
1965
;
4
(
7
):
566
-
73
.
26.
Thornton
J I
,
Guarino
K
,
Rios
F G
,
Cashman
P J
.
Enhancement of the luminol test by means of light amplification
.
J. Forensic Sci
1986
;
31
:
254
-
7
.
27.
Zweidinger
R A.
,
Lytle
L T
,
Pitt
C G
.
Photography of bloodstains visualized by luminol
.
J Forensic Sci
1973
;
18
(
4
):
296
-
302
.
28.
Lytle
L T
,
Hedgecock
D G
.
Chemiluminescence in the visualization of forensic bloodstains
.
J Forensic Sci
1978
;
550-62
.
29.
Colonna
M
,
Introna
F
 Jr.
,
Di Nunno
C
,
Dattoli
V
.
Valutazioni tanatocronologiche su resti scheletrici ed applicazione sperimentale del luminol test
.
Zacchia
 0044-1570
1987
:
5
(
4
):
65
-
80
.
30.
Weber
K
.
Die Anwendung der Chemiluminescenz des Luminols in der genchtlichen Medizin und Toxicologie. I. Der Nachweis von Blutspuren
.
Dtsch Z Ges Gerichtl Med
1966
;
57
:
410
-
23
.
This content is only available via PDF.
You do not currently have access to this content.