Skip Nav Destination
Issues
September 1988
ISSN 0098-2202
EISSN 1528-901X
In this Issue
Research Papers
Visualization Techniques for Unsteady Flows: An Overview
J. Fluids Eng. September 1988, 110(3): 231–243.
doi: https://doi.org/10.1115/1.3243539
Exploration of the Iceformation Method Applied to a Diffuser
J. Fluids Eng. September 1988, 110(3): 244–250.
doi: https://doi.org/10.1115/1.3243540
Topics:
Diffusers
,
Design
,
Flow (Dynamics)
,
Fluids
,
Drag (Fluid dynamics)
,
Experimental methods
,
Geometry
,
Ice
,
Optimization
,
Pressure
Unified Equation of Motion (UEM) Approach as Applied to S1 Turbomachinery Problems
J. Fluids Eng. September 1988, 110(3): 251–256.
doi: https://doi.org/10.1115/1.3243541
Mean Flow and Turbulence Measurements of Annular Swirling Flows
J. Fluids Eng. September 1988, 110(3): 257–263.
doi: https://doi.org/10.1115/1.3243542
Topics:
Flow (Dynamics)
,
Swirling flow
,
Turbulence
,
Sensors
,
Annulus
,
Eddies (Fluid dynamics)
,
Probes
,
Shear (Mechanics)
,
Stress
,
Viscosity
Turbulence Measurements With Symmetrically Bent V-Shaped Hot-Wires. Part 1: Principles of Operation
J. Fluids Eng. September 1988, 110(3): 264–269.
doi: https://doi.org/10.1115/1.3243543
Topics:
Turbulence
,
Wire
,
Cantilevers
,
Convection
,
Cooling
,
Deformation
,
Errors
,
Vibration
Turbulence Measurements With Symmetrically Bent V-Shaped Hot-Wires. Part 2: Measuring Velocity Components and Turbulent Shear Stresses
J. Fluids Eng. September 1988, 110(3): 270–274.
doi: https://doi.org/10.1115/1.3243544
Topics:
Shear stress
,
Turbulence
,
Wire
,
Cantilevers
,
Flow (Dynamics)
,
Fluctuations (Physics)
,
Probes
,
Touch (physiological)
An LDA Study of the Backward-Facing Step Flow, Including the Effects of Velocity Bias
J. Fluids Eng. September 1988, 110(3): 275–282.
doi: https://doi.org/10.1115/1.3243545
Comparison of Minimum Length Nozzles
J. Fluids Eng. September 1988, 110(3): 283–288.
doi: https://doi.org/10.1115/1.3243546
Topics:
Nozzles
,
Algorithms
,
Flow (Dynamics)
Time-Dependent Laminar Backward-Facing Step Flow in a Two-Dimensional Duct
J. Fluids Eng. September 1988, 110(3): 289–296.
doi: https://doi.org/10.1115/1.3243547
Topics:
Ducts
,
Flow (Dynamics)
,
Reynolds number
,
Separation (Technology)
,
Steady state
,
Dimensions
,
Computation
,
Corners (Structural elements)
,
Momentum
Vectorizable Implicit Algorithms for the Flux-Difference Split, Three-Dimensional Navier-Stokes Equations
J. Fluids Eng. September 1988, 110(3): 297–305.
doi: https://doi.org/10.1115/1.3243548
Topics:
Algorithms
,
Navier-Stokes equations
,
Computation
,
Flow (Dynamics)
,
Relaxation (Physics)
,
Resolution (Optics)
,
Steady state
,
Vortex flow
,
Wings
Consistent Boundary Conditions for Reduced Navier-Stokes (RNS) Scheme Applied to Three-Dimensional Viscous Flows
J. Fluids Eng. September 1988, 110(3): 306–314.
doi: https://doi.org/10.1115/1.3243549
Topics:
Boundary-value problems
,
Flow (Dynamics)
,
Pressure
,
Ducts
,
Compressible flow
,
Internal flow
,
Momentum
,
Turbomachinery
,
Viscous flow
The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow Theory
J. Fluids Eng. September 1988, 110(3): 315–324.
doi: https://doi.org/10.1115/1.3243550
Topics:
Cascades (Fluid dynamics)
,
Cavitation
,
Cavities
,
Cavity flows
,
Design
,
Drag (Fluid dynamics)
,
Fluid-dynamic forces
,
Inverse problems
,
Pressure
,
Shapes
An Optical Method for Determining Bubble Size Distributions—Part I:Theory
J. Fluids Eng. September 1988, 110(3): 325–331.
doi: https://doi.org/10.1115/1.3243551
Topics:
Bubbles
,
Bubbly flow
,
Statistical analysis
,
Two-phase flow
An Optical Method for Determining Bubble Size Distributions—Part II: Application to Bubble Size Measurement in a Three-Phase Fluidized Bed
J. Fluids Eng. September 1988, 110(3): 332–338.
doi: https://doi.org/10.1115/1.3243552
Topics:
Bubbles
,
Fluidized beds
,
Size measurement
,
Particulate matter
,
Cylinders
,
Equilibrium (Physics)
,
Flow (Dynamics)
,
Flux (Metallurgy)
,
Gas flow
,
Glass
Technical Briefs
On the Drag Coefficient and the Correct Integration of the Equation of Motion of Particles in Gases
J. Fluids Eng. September 1988, 110(3): 339–341.
doi: https://doi.org/10.1115/1.3243553
Topics:
Drag (Fluid dynamics)
,
Equations of motion
,
Gases
,
Particulate matter
Discussions
Discussion: “The Trailing Edge of a Pitching Airfoil at High Reduced Frequencies” (Poling, D. R., and Telionis, D. P., 1987, ASME J. Fluids Eng., 109)
J. Fluids Eng. September 1988, 110(3): 342.
doi: https://doi.org/10.1115/1.3243554
Discussion: “The Trailing Edge of a Pitching Airfoil at High Reduced Frequencies” (Poling, D. R., and Telionis, D. P., 1987, ASME J. Fluids Eng., 109)
J. Fluids Eng. September 1988, 110(3): 342.
doi: https://doi.org/10.1115/1.3243555
Closure to “Discussion of ‘The Trailing Edge of a Pitching Airfoil at High Reduced Frequencies’” (1988, ASME J. Fluids Eng., 110, p. 342)
J. Fluids Eng. September 1988, 110(3): 343.
doi: https://doi.org/10.1115/1.3243556
Closure to “Discussion of ‘The Trailing Edge of a Pitching Airfoil at High Reduced Frequencies’” (1988, ASME J. Fluids Eng., 110, pp. 342–343)
J. Fluids Eng. September 1988, 110(3): 343.
doi: https://doi.org/10.1115/1.3243557
Discussion: “Erosion Due to Impingement of Cavitating Jet” (Yamaguchi, A., and Shimizu, S., 1987, ASME J. Fluids Eng., 109)
J. Fluids Eng. September 1988, 110(3): 343.
doi: https://doi.org/10.1115/1.3243558
Closure to “Discussion of ‘Erosion Due to Impingement of Cavitating Jet’” (1988, ASME J. Fluids Eng., 110, p. 343)
J. Fluids Eng. September 1988, 110(3): 343–344.
doi: https://doi.org/10.1115/1.3243559
Discussion: “Temperature Effects on Single Bubble Collapse and Induced Impulsive Pressure” (Shima, A., Tomita, Y., and Ohno, T., 1987, ASME J. Fluids Eng., 110, pp. 194–199)
J. Fluids Eng. September 1988, 110(3): 344.
doi: https://doi.org/10.1115/1.3243560
Topics:
Bubbles
,
Collapse
,
Fluids
,
Pressure
,
Temperature effects
Closure to “Discussion of ‘Temperature Effects on Single Bubble Collapse and Induced Impulsive Pressure’” (1988, ASME J. Fluids Eng., 110, p. 344)
J. Fluids Eng. September 1988, 110(3): 344.
doi: https://doi.org/10.1115/1.3243561
Topics:
Bubbles
,
Collapse
,
Fluids
,
Temperature effects