Graphical Abstract Figure

Effects of sand bed with different grain sizes, ds, on variations of bubble mean diameter in vertically discharged bubble plumes for Qa = 6 L/min, h = 0.10 m, and do = 3 mm: a) bubble plume without sand bed (i.e., benchmark test); b) ds = 2.38 mm; c) ds = 4.76 mm; d) ds = 12.5 mm.

Graphical Abstract Figure

Effects of sand bed with different grain sizes, ds, on variations of bubble mean diameter in vertically discharged bubble plumes for Qa = 6 L/min, h = 0.10 m, and do = 3 mm: a) bubble plume without sand bed (i.e., benchmark test); b) ds = 2.38 mm; c) ds = 4.76 mm; d) ds = 12.5 mm.

Close modal

Abstract

The present research paper reports the outcomes of an extensive laboratory investigation examining the effects of grain size and air discharge on bubble dynamics of bubble plumes passing through a sand bed layer. The effects of sand layer thickness and grain size on bubble characteristics such as bubble size, bubble concentration and velocity, and interfacial area within bubble plumes are studied for a wide range of air discharges. The experiments revealed 58% reduction on the mode bubble size when the sand bed thickness increased from 33 to 66 times of the nozzle diameter. The distribution of bubble size along the main axis of the plume indicated a linear correlation, while bubble size distribution became more uniform with relatively smaller bubbles when air passes through a sand bed layer. A sand bed layer significantly improved the formation of uniform bubbly flow with relatively smaller bubbles sizes. Moreover, an increase in the thickness of sand bed layer reduced the mean bubble velocity and consequently extended the residence time of bubbles. Nonlinear correlations were observed between particle size and bubble velocity, and empirical correlations were formulated to estimate mean bubble diameter and bubble velocity for different bed particle sizes and initial air discharges. The frequency of bubbles increased with increasing air discharge, and the sand bed layer almost doubled the frequency of bubbles. The interfacial area of bubbles, which is an indicator of the contact surface between air and water, increased by approximately 32% when the initial Reynolds number doubled.

References

1.
Wüest
,
A.
,
Brooks
,
N. H.
, and
Imboden
,
D. M.
,
1992
, “
Bubble Plume Modeling for Lake Restoration
,”
Water Resour. Res.
,
28
(
12
), pp.
3235
3250
.10.1029/92WR01681
2.
Simiano
,
M.
,
Zboray
,
R.
,
De Cachard
,
F.
,
Lakehal
,
D.
, and
Yadigaroglu
,
G.
,
2006
, “
Comprehensive Experimental Investigation of the Hydrodynamics of Large-Scale, 3D, Oscillating Bubble Plumes
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1160
1181
.10.1016/j.ijmultiphaseflow.2006.05.014
3.
Funaki
,
J.
,
Shintani
,
A.
,
Kawaguchi
,
R.
, and
Hirata
,
K.
,
2009
, “
Basic Space Structure of Bubble-Jet Plume Using Consecutive 3D-PTV
,”
J. Fluid Sci. Technol.
,
4
(
2
), pp.
348
358
.10.1299/jfst.4.348
4.
Paerl
,
H. W.
, and
Otten
,
T. G.
,
2013
, “
Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls
,”
Microb. Ecol.
,
65
(
4
), pp.
995
1010
.10.1007/s00248-012-0159-y
5.
Pacheco
,
C. H.
, and
Lima Neto
,
I. E.
,
2017
, “
Effect of Artificial Circulation on the Removal Kinetics of Cyanobacteria in a Hypereutrophic Shallow Lake
,”
J. Environ. Eng.
,
143
(
12
), p.
06017010
.10.1061/(ASCE)EE.1943-7870.0001289
6.
Lima
,
D. D.
, and
Lima Neto
,
I. E.
,
2018
, “
Effect of Nozzle Design on Bubbly Jet Entrainment and Oxygen Transfer Efficiency
,”
J. Hydraul. Eng.
,
144
(
8
), p.
06018010
.10.1061/(ASCE)HY.1943-7900.0001493
7.
McGinnis
,
D. F.
,
Greinert
,
J.
,
Artemov
,
Y.
,
Beaubien
,
S. E.
, and
Wüest
,
A.
,
2006
, “
Fate of Rising Methane Bubbles in Stratified Waters: How Much Methane Reaches the Atmosphere
,”
J. Geophys. Res. Oceans
,
111
(
C9
), p.
C09007
.10.1029/2005JC003183
8.
Bombardelli
,
F. A.
,
Buscaglia
,
G. C.
,
Rehmann
,
C. R.
,
Rincón
,
L. E.
, and
García
,
M. H.
,
2007
, “
Modeling and Scaling of Aeration Bubble Plumes: A Two-Phase Flow Analysis
,”
J. Hydraul. Res.
,
45
(
5
), pp.
617
630
.10.1080/00221686.2007.9521798
9.
Weber
,
T. C.
,
Mayer
,
L.
,
Jerram
,
K.
,
Beaudoin
,
J.
,
Rzhanov
,
Y.
, and
Lovalvo
,
D.
,
2014
, “
Acoustic Estimates of Methane Gas Flux From the Seabed in a 6000 km2 Region in the Northern Gulf of Mexico
,”
Geochem. Geophys.
,
15
(
5
), pp.
1911
1925
.10.1002/2014GC005271
10.
Wang
,
B.
,
Lai
,
C. C.
, and
Socolofsky
,
S. A.
,
2019
, “
Mean Velocity, Spreading and Entrainment Characteristics of Weak Bubble Plumes in Unstratified and Stationary Water
,”
J. Fluid Mech.
,
874
, pp.
102
130
. 10.1017/jfm.2019.461
11.
Lai
,
C. C.
, and
Socolofsky
,
S. A.
,
2019
, “
The Turbulent Kinetic Energy Budget in a Bubble Plume
,”
J. Fluid Mech.
,
865
, pp.
993
1041
. 10.1017/jfm.2019.66
12.
Niida
,
Y.
, and
Watanabe
,
Y.
,
2018
, “
Oxygen Transfer From Bubble-Plumes
,”
Phys. Fluids
,
30
(
10
), p.
107104
.10.1063/1.5040819
13.
Schladow
,
S. G.
, and
Fisher
,
I. H.
,
1995
, “
The Physical Response of Temperate Lakes to Artificial Destratification
,”
Limnol. Oceanogr.
,
40
(
2
), pp.
359
373
.10.4319/lo.1995.40.2.0359
14.
Lima Neto
,
I. E.
,
Cardoso
,
S. S.
, and
Woods
,
A. W.
,
2016
, “
On Mixing a Density Interface by a Bubble Plume
,”
J. Fluid Mech.
,
802
, p.
R3
.10.1017/jfm.2016.454
15.
Mobley
,
M.
,
Gantzer
,
P.
,
Benskin
,
P.
,
Hannoun
,
I.
,
McMahon
,
S.
,
Austin
,
D.
, and
Scharf
,
R.
,
2019
, “
Hypolimnetic Oxygenation of Water Supply Reservoirs Using Bubble Plume Diffusers
,”
Lake Reservoir Manage.
,
35
(
3
), pp.
247
265
.10.1080/10402381.2019.1628134
16.
Waterhouse
,
J.
,
Kjeldsen
,
T.
, and
Bryant
,
L.
,
2021
, “
Investigating the Effectiveness of Bubble-Plume Destratification Systems in a Temperate, Shallow, Drinking Water Reservoir
,”
EGU General Assembly Conference Abstracts
, Online, Apr. 19–30, Paper No. EGU21-12509.10.5194/egusphere-egu21-12509
17.
Rosso
,
D.
, and
Stenstrom
,
M. K.
,
2006
, “
Surfactant Effects on α-Factors in Aeration Systems
,”
Water Res.
,
40
(
7
), pp.
1397
1404
.10.1016/j.watres.2006.01.044
18.
Lima Neto
,
I. E.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2008
, “
Air Injection in Water With Different Nozzles
,”
J. Environ. Eng.
,
134
(
4
), pp.
283
294
.10.1061/(ASCE)0733-9372(2008)134:4(283)
19.
Lima Neto
,
I. E. L.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2008
, “
Bubbly Jets in Stagnant Water
,”
Int. J. Multiphase Flow
,
34
(
12
), pp.
1130
1141
.10.1016/j.ijmultiphaseflow.2008.06.005
20.
Laupsien
,
D.
,
Cockx
,
A.
, and
Line
,
A.
,
2017
, “
Bubble Plume Oscillations in Viscous Fluids
,”
Chem. Eng. Technol.
,
40
(
8
), pp.
1484
1493
.10.1002/ceat.201600690
21.
Liu
,
L.
,
Yan
,
H.
,
Ziegenhein
,
T.
,
Hessenkemper
,
H.
,
Li
,
Q.
, and
Lucas
,
D.
,
2019
, “
A Systematic Experimental Study and Dimensionless Analysis of Bubble Plume Oscillations in Rectangular Bubble Columns
,”
Chem. Eng. J.
,
372
, pp.
352
362
.10.1016/j.cej.2019.04.158
22.
Chen
,
L.
,
2019
, “
An Improved Correlation of Bubble Size Distribution With the Measured Acoustic Spectrum of a Turbulent Bubble Plume
,”
Proceedings of ACOUSTICS
, Cape Schanck, Victoria, Australia, Nov. 10–13, pp.
1
8
.https://acoustics.asn.au/conference_proceedings/AAS2019/papers/p53.pdf
23.
Jain
,
D.
,
Lau
,
Y. M.
,
Kuipers
,
J. A. M.
, and
Deen
,
N. G.
,
2013
, “
Discrete Bubble Modeling for a Micro-Structured Bubble Column
,”
Chem. Eng. Sci.
,
100
, pp.
496
505
.10.1016/j.ces.2013.02.060
24.
Sujatha
,
K. T.
,
Meeusen
,
B. G.
,
Kuipers
,
J. A. M.
, and
Deen
,
N. G.
,
2015
, “
Experimental Studies of Bubbly Flow in a Pseudo-2D Micro-Structured Bubble Column Reactor Using Digital Image Analysis
,”
Chem. Eng. Sci.
,
130
, pp.
18
30
. 10.1016/j.ces.2015.02.029
25.
Behzadipour
,
A.
,
Azimi
,
A. H.
, and
Lima Neto
,
I. E.
,
2022
, “
Effect of Grid-Screen on Bubble Characteristics of Vertically Discharged Bubble Plumes
,”
J. Chem. Eng. Sci.
,
253
, p.
117545
.10.1016/j.ces.2022.117545
26.
Behzadipour
,
A.
, and
Azimi
,
A. H.
,
2022
, “
Air Bubble Dynamics in Bubble Plumes With a Grid-Screen
,”
39th IAHR World Congress
, Granada, Spain, June 19–24, p.
10
.10.3850/IAHR-39WC252171192022695
27.
Rensen
,
J.
, and
Roig
,
V.
,
2001
, “
Experimental Study of the Unsteady Structure of a Confined Bubble Plume
,”
Int. J. Multiphase Flow
,
27
(
8
), pp.
1431
1449
. 10.1016/S0301-9322(01)00012-X
28.
Boes
,
R. M.
, and
Hager
,
W. H.
,
2003
, “
Two-Phase Flow Characteristics of Stepped Spillways
,”
J. Hydraul. Eng.
,
129
(
9
), pp.
661
670
. 10.1061/(ASCE)0733-9429(2003)129:9(661)
29.
Murzyn
,
F.
,
Mouaze
,
D.
, and
Chaplin
,
J. R.
,
2005
, “
Optical Fiber Probe Measurements of Bubbly Flow in Hydraulic Jumps
,”
Int. J. Multiphase Flow
,
31
(
1
), pp.
141
154
.10.1016/j.ijmultiphaseflow.2004.09.004
30.
Behzadipour
,
A.
,
Azimi
,
A. H.
, and
Lima Neto
,
I. E.
,
2023
, “
Effects of Air Discharge on Bubble Dynamics in Vertically Discharged Bubble Plumes
,”
J. Chem. Eng. Sci.
,
268
, p.
118440
.10.1016/j.ces.2022.118440
31.
Behzadipour
,
A.
, and
Azimi
,
A. H.
,
2023
, “
Hydrodynamic Modifications in Vertical Bubble Plumes by a Grid-Screen
,”
J. Chem. Eng. Sci.
,
282
, p.
119307
.10.1016/j.ces.2023.119307
32.
Pagliara
,
S.
,
Felder
,
S.
,
Boes
,
R. M.
, and
Hohermuth
,
B.
,
2024
, “
Intrusive Effects of Dual-Tip Conductivity Probes on Bubble Measurements in a Wide Velocity Range
,”
Int. J. Multiphase Flow
,
170
, p.
104660
.10.1016/j.ijmultiphaseflow.2023.104660
33.
Tacke
,
K. H.
,
Schubert
,
H. G.
,
Weber
,
D. J.
, and
Schwerdtfeger
,
K.
,
1985
, “
Characteristics of Round Vertical Gas Bubble Jets
,”
Metall. Trans. B
,
16
(
2
), pp.
263
275
.10.1007/BF02679717
34.
Behzadipour
,
A.
,
2023
, “
Experimental Investigations on the Effects of Grid-Screen, Sand Bed, and Nozzle Orientation on the Dynamics of Bubble Plumes
,”
Ph.D. thesis
,
Lakehead University
,
Thunder Bay, ON, Canada
, p.
247
.https://knowledgecommons.lakeheadu.ca/handle/2453/5196
35.
Iguchi
,
M.
,
Nozawa
,
K.
, and
Morita
,
Z. I.
,
1991
, “
Bubble Characteristics in the Momentum Region of Air-Water Vertical Bubbling Jet
,”
ISIJ Int.
,
31
(
9
), pp.
952
959
.10.2355/isijinternational.31.952
36.
Iguchi
,
M.
,
Ueda
,
H.
, and
Uemura
,
T.
,
1995
, “
Bubble and Liquid Flow Characteristics in a Vertical Bubbling Jet
,”
Int. J. Multiphase Flow
,
21
(
5
), pp.
861
873
.10.1016/0301-9322(95)00014-O
37.
Kawakami
,
M.
,
Tomimoto
,
N.
, and
Ito
,
K.
,
1982
, “
Statistical Analysis of Gas Bubbles Dispersion in Liquid Phase Water Model Experiment on Bottom Blowing Processes
,”
Tetsu-to-Hagané
,
68
(
7
), pp.
774
783
.10.2355/tetsutohagane1955.68.7_774
38.
Zhang
,
W.
, and
Zhu
,
D. Z.
,
2013
, “
Bubble Characteristics of Air–Water Bubbly Jets in Crossflow
,”
Int. J. Multiphase Flow
,
55
, pp.
156
171
.10.1016/j.ijmultiphaseflow.2013.05.003
You do not currently have access to this content.