Abstract

Fluid disinfection involving ultraviolet (UV) rays is a promising method due to its easy implementation and low cost compared to other methods. In the present work, fluid disinfection in a Taylor–Couette configuration operating with power-law fluids with different absorbance coefficients, and fluence rates were simulated using the lattice Boltzmann Method. The effects of operating parameters such as Taylor and axial Reynolds numbers, power-law index behavior, and fluence rate were analyzed. Results show that the required UV dose decreases for an increase in absorbance coefficient, while it grows for increasing power-law indexes. For Ta = 120 and Re = 3, the disinfection reaches 82.3% for pseudo-plastic fluids and is complete for dilatant fluids. Considering different absorbance coefficients, it was observed that α=0.4 leads to complete disinfection regardless of the fluid. For α=0.5, fluid disinfection is complete for the dilatant fluid only. A value of 0.6 leads to partial disinfection (90%) for all fluids.

References

1.
Geveke
,
D. J.
,
2005
, “
UV Inactivation of Bacteria in Apple Cider
,”
J. Food Prot.
,
68
(
8
), pp.
1739
1742
.10.4315/0362-028X-68.8.1739
2.
Koutchma
,
T.
,
Keller
,
S.
,
Chirtel
,
S.
, and
Parisi
,
B.
,
2004
, “
Ultraviolet Disinfection of Juice Products in Laminar and Turbulent Flow Reactors
,”
Innov. Food Sci. Emerg. Technol.
,
5
(
2
), pp.
179
189
.10.1016/j.ifset.2004.01.004
3.
Bolton
,
J. R.
,
2000
, “
Calculation of Ultraviolet Fluence Rate Distributions in an Annular Reactor: Significance of Refraction and Reflection
,”
Water Res.
,
34
(
13
), pp.
3315
3324
.10.1016/S0043-1354(00)00087-7
4.
Cantwell
,
R. E.
, and
Hofmann
,
R.
,
2011
, “
Ultraviolet Absorption Properties of Suspended Particulate Matter in Untreated Surface Waters
,”
Water Res.
,
45
(
3
), pp.
1322
1328
.10.1016/j.watres.2010.10.020
5.
Dutta
,
P. K.
, and
Ray
,
A. K.
,
2004
, “
Experimental Investigation of Taylor Vortex Photocatalytic Reactor for Water Purification
,”
Chem. Eng. Sci.
,
59
(
22–23
), pp.
5249
5259
.10.1016/j.ces.2004.07.091
6.
Sengupta
,
T. K.
,
Kabir
,
M. F.
, and
Ray
,
A. K.
,
2001
, “
A Taylor Vortex Photocatalytic Reactor for Water Purification
,”
Ind. Eng. Chem. Res.
,
40
(
23
), pp.
5268
5281
.10.1021/ie001120i
7.
Li
,
H.
,
Osman
,
H.
,
Kang
,
C.
, and
Ba
,
T.
,
2017
, “
Numerical and Experimental Investigation of UV Disinfection for Water Treatment
,”
Appl. Therm. Eng.
,
111
, pp.
280
291
.10.1016/j.applthermaleng.2016.09.106
8.
Outchma
,
T. K.
, and
Arisi
,
B. P.
,
2004
, “
Biodosimetry of Escherichia coli uv inactivation in Model Juices With Regard to Dose Distribution in Annular UV Reactors
,”
J. Food Sci.
,
69
(
1
), pp.
FEP14
FEP22
.10.1111/j.1365-2621.2004.tb17862.x
9.
Forney
,
L.
,
Goodridge
,
C.
, and
Pierson
,
J.
,
2003
, “
Ultraviolet Disinfection: Similitude in Taylor- Couette and Channel Flow
,”
Environ. Sci. Technol.
,
37
(
21
), pp.
5015
5020
.10.1021/es0303236
10.
Forney
,
L.
,
Pierson
,
J.
, and
Ye
,
Z.
,
2004
, “
Juice Irradiation With Taylor-Couette Flow: UV Inactivation of Escherichia coli
,”
J. Food Prot.
,
67
(
11
), pp.
2410
2415
.10.4315/0362-028X-67.11.2410
11.
Forney
,
L.
, and
Pierson
,
J.
,
2003
, “
Optimum Photolysis in Taylor–Couette Flow
,”
AIChE J.
,
49
(
3
), pp.
727
733
.10.1002/aic.690490316
12.
Ye
,
Z.
,
Koutchma
,
T.
,
Parisi
,
B.
,
Larkin
,
J.
, and
Forney
,
L.
,
2007
, “
Ultraviolet Inactivation Kinetics of Escherichia coli and Yersinia pseudotuberculosis in Annular Reactors
,”
J. Food Sci.
,
72
(
5
), pp.
E271
E278
.10.1111/j.1750-3841.2007.00397.x
13.
Ye
,
Z.
,
Forney
,
L.
,
Koutchma
,
T.
,
Giorges
,
A.
, and
Pierson
,
J.
,
2008
, “
Optimum UV Disinfection Between Concentric Cylinders
,”
Ind. Eng. Chem. Res.
,
47
(
10
), pp.
3444
3452
.10.1021/ie0703641
14.
Gayán
,
E.
,
Condón
,
S.
, and
Álvarez
,
I.
,
2014
, “
Continuous-Flow UV Liquid Food Pasteurization: Engineering Aspects
,”
Food Bioprocess Technol.
,
7
(
10
), pp.
2813
2827
.10.1007/s11947-014-1267-0
15.
Giorges
,
A. T.
,
Pierson
,
J. A.
, and
Forney
,
L. J.
,
2008
, “
Effect of Reactor Length on the Disinfection of Fluids in Taylor- Couette Photoreactor
,”
Ind. Eng. Chem. Res.
,
47
(
19
), pp.
7490
7495
.10.1021/ie800250r
16.
Müller
,
A.
,
Orlowska
,
M.
,
Knörr
,
M.
,
Stahl
,
M. R.
,
Greiner
,
R.
, and
Koutchma
,
T.
,
2017
, “
Actinometric and Biodosimetric Evaluation of UV-C Dose Delivery in Annular, Taylor–Coutte and Coiled Tube Continuous Systems
,”
Food Sci. Technol. Int.
,
23
(
3
), pp.
222
234
.10.1177/1082013216679010
17.
Barut Gök
,
S.
,
Vetter
,
E.
,
Kromm
,
L.
,
Hansjosten
,
E.
,
Hensel
,
A.
,
Gräf
,
V.
, and
Stahl
,
M.
,
2021
, “
Inactivation of E. coli and L. innocua in Milk by a Thin Film UV-C Reactor Modified With Flow Guiding Elements (FGE)
,”
Int. J. Food Microbiol.
,
343
, p.
109105
.10.1016/j.ijfoodmicro.2021.109105
18.
Hashemabadi
,
S. H.
,
Ghaderzadeh
,
F.
, and
Taghipour
,
F.
,
2014
, “
CFD Simulation of UV Disinfection Reactor for Applesauce With a Low UV Absorption Coefficient
,”
J. Chem. Pet. Eng.
,
48
(
2
), pp.
103
116
.10.22059/JCHP E.2014.7561
19.
Brewster
,
R. A.
,
2022
, “
A Rational Friction Factor Correlation for Laminar Fully Developed Pipe Flows of Shear-Thinning Non-Newtonian Fluids
,”
ASME J. Fluids Eng.
,
144
(
1
), p. 014502.10.1115/1.4051576
20.
Thakur
,
P.
,
Tiwari
,
N.
, and
Chhabra
,
R. P.
,
2021
, “
Flow of Power-Law Fluids Past a Rotating Cylinder at High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
143
(
10
), p. 101301.10.1115/1.4050973
21.
Akyildiz
,
F. T.
,
Siginer
,
D. A.
, and
Boutaous
,
M.
,
2019
, “
Unsteady Flow of Power Law Fluids With Wall Slip in Microducts
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081107
.10.1115/1.4042558
22.
Schrimpf
,
M.
,
Esteban
,
J.
,
Warmeling
,
H.
,
Färber
,
T.
,
Behr
,
A.
, and
Vorholt
,
A. J.
,
2021
, “
Taylor-Couette Reactor: Principles, Design, and Applications
,”
AIChE J.
,
67
(
5
), p.
e17228
.10.1002/aic.17228
23.
Zhou
,
J. G.
,
2011
, “
Axisymmetric Lattice Boltzmann Method Revised
,”
Phys. Review E
,
84
(
3
), p.
036704
.10.1103/PhysRevE.84.036704
24.
Khali
,
S.
,
Nebbali
,
R.
,
Ameziani
,
D.
, and
Bouhadef
,
K.
,
2013
, “
Numerical Investigation of non-Newtonian Fluids in Annular Ducts With Finite Aspect Ratio Using Lattice Boltzmann Method
,”
Phys. Rev. E
,
87
(
5
), p.
053002
.10.1103/PhysRevE.87.053002
25.
Danckwerts
,
P.
,
1953
, “
Continuous Flow Systems: Distribution of Residence Times
,”
Chem. Eng. Sci.
,
2
(
1
), pp.
1
13
.10.1016/0009-2509(53)80001-1
26.
Rodrigues
,
A. E.
,
2021
, “
Residence Time Distribution (RTD) Revisited
,”
Chem. Eng. Sci.
,
230
, p.
116188
.10.1016/j.ces.2020.116188
27.
Hwang
,
J.-Y.
, and
Yang
,
K.-S.
,
2004
, “
Numerical Study of Taylor–Couette Flow With an Axial Flow
,”
Comput. Fluids
,
33
(
1
), pp.
97
118
.10.1016/S0045-7930(03)00033-1
28.
Alibenyahia
,
B.
,
Lemaitre
,
C.
,
Nouar
,
C.
, and
Ait-Messaoudene
,
N.
,
2012
, “
Revisiting the Stability of Circular Couette Flow of Shear-Thinning Fluids
,”
J. Non-Newtonian Fluid Mech.
,
183–184
, pp.
37
51
.10.1016/j.jnnfm.2012.06.002
29.
Khali
,
S.
,
Bousri
,
A.
,
Hamadouche
,
A.
,
Eddine Ameziani
,
D.
,
Bennacer
,
R.
, and
Nebbali
,
R.
,
2022
, “
Double Diffusive Convection of Power Law Fluids Through Taylor–Couette Flow
,”
J. Thermophys. Heat Transfer
,
36
(
2
), pp.
328
341
.10.2514/1.T6405
30.
Bird
,
R. B.
,
2002
, “
Transport Phenomena
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
R1
R4
.10.1115/1.1424298
31.
Zhou
,
J. G.
,
2004
,
Lattice Boltzmann Methods for Shallow Water Flows
,
Springer
,
Berlin
, Vol.
4
.
You do not currently have access to this content.