Abstract

This study was aimed at numerically investigating the source, generation mechanism, and strategy for reducing aerodynamic noises inside a steam turbine control valve. A delayed detached eddy simulation was performed to extract the three-dimensional unsteady turbulent flow structures formed within the serpentine flow passage of the turbine valve. Acoustic analogies, spatial Fourier transform, and spectral proper orthogonal decomposition on the delayed detached eddy simulation-simulated flow data were complementarily combined to clarify the generation mechanism of tonal and broadband aerodynamic noises. The results showed that broadband noises were produced by wall-attached jet flow and turbulent mixing flow between the annular wall jets and central reverse flow. High-intensity tonal noises were generated by the excitation of multi-order natural acoustic modes of the bell-shaped valve spindle. The intensive acoustic pressure pulsations concentrated inside the bell jar and propagated along the diffuser to the downstream turbine chamber. A novel ring acoustic liner was designed using the acoustic impedance model to reduce the valve noises without sacrificing the flow performance. The noise reduction effectiveness was evaluated by solving the linearized Navier–Stokes equations in the frequency domain.

References

1.
Wang
,
P.
,
Ma
,
H.
,
Quay
,
B.
,
Santavicca
,
D. A.
, and
Liu
,
Y.
,
2018
, “
Computational Fluid Dynamics of Steam Flow in a Turbine Control Valve With a Bell-Shaped Spindle
,”
Appl. Therm. Eng.
,
129
, pp.
1333
1347
.10.1016/j.applthermaleng.2017.10.104
2.
Michaud
,
S.
,
Ziada
,
S.
, and
Pastorel
,
H.
,
2001
, “
Acoustic Fatigue of a Steam Dump Pipe System Excited by Valve Noise
,”
ASME J. Pressure Vessel Technol.
,
123
(
4
), pp.
461
468
.10.1115/1.1400741
3.
Domnick
,
C. B.
,
Benra
,
F. K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2017
, “
Investigation on Flow-Induced Vibrations of a Steam Turbine Inlet Valve Considering Fluid–Structure Interaction Effects
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022507
.10.1115/1.4034352
4.
Nakano
,
M.
,
Outa
,
E.
, and
Tajima
,
K.
,
1988
, “
Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve
,”
ASME. J. Fluids Eng.
,
110
(
1
), pp.
55
61
.10.1115/1.3243511
5.
Domnick
,
C. B.
,
Benra
,
F. K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081601
.10.1115/1.4029309
6.
Musch
,
C.
,
Deister
,
F.
,
Zimmer
,
G.
,
Balkowski
,
I.
,
Brüggemann
,
P.
, and
Haslinger
,
W.
,
2014
, “
A New Emergency Stop and Control Valve Design: Part 2—Validation of Numerical Model and Transient Flow Physics
,”
ASME
Paper No. V01BT27A002.10.1115/V01BT27A002
7.
Bianchini
,
C.
,
Da Soghe
,
R.
,
Cosi
,
L.
, and
Imparato
,
E.
,
2015
, “
Aeroacoustic Computational Analysis of a Steam Turbine Trip Valve
,”
ASME
Paper No. V008T26A014.10.1115/V008T26A014
8.
Liu
,
J.
,
Zhang
,
T.
, and
Zhang
,
Y. O.
,
2013
, “
Numerical Study on Flow-Induced Noise for a Steam Stop-Valve Using Large Eddy Simulation
,”
J. Mar. Sci. Appl.
,
12
(
3
), pp.
351
360
.10.1007/s11804-013-1195-9
9.
Joong Kim
,
S.
, and
Jin Sung
,
H.
,
2018
, “
Design of the Solenoid Valve of an Antilock Braking System With Reduced Flow Noise
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031105
.10.1115/1.4038088
10.
Ogawa
,
K.
,
2012
, “
Noise Reduction in Butterfly Valve Cavitation by Semicircular Fins and Visualization of Cavitation Flow
,”
Mechanical Engineering
,
IntechOpen
, Osaka Sangyo University, Japan.
11.
Smith
,
B. A.
, and
Luloff
,
B. V.
,
2000
, “
The Effect of Seat Geometry on Gate Valve Noise
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
401
407
.10.1115/1.1286031
12.
Xu
,
W.
,
Wang
,
Q.
,
Wu
,
D.
, and
Li
,
Q.
,
2019
, “
Simulation and Design Improvement of a Low Noise Control Valve in Autonomous Underwater Vehicles
,”
Appl. Acoust.
,
146
, pp.
23
30
.10.1016/j.apacoust.2018.10.019
13.
Li
,
J.
, and
Zhao
,
S.
,
2017
, “
Optimization of Valve Opening Process for the Suppression of Impulse Exhaust Noise
,”
J. Sound Vib.
,
389
, pp.
24
40
.10.1016/j.jsv.2016.11.015
14.
Chen
,
C.
,
Li
,
X.
, and
Thiele
,
F.
,
2018
, “
Numerical Study on Non-Locally Reacting Behavior of Nacelle Liners Incorporating Drainage Slots
,”
J. Sound Vib.
,
424
, pp.
15
31
.10.1016/j.jsv.2018.03.005
15.
Lahiri
,
C.
, and
Bake
,
F.
,
2017
, “
A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors
,”
J. Sound Vib.
,
400
, pp.
564
605
.10.1016/j.jsv.2017.04.005
16.
Campos
,
L. M.
, and
Oliveira
,
J. M.
,
2004
, “
On the Optimization of Non-Uniform Acoustic Liners on Annular Nozzles
,”
J. Sound Vib.
,
275
(
3–5
), pp.
557
576
.10.1016/j.jsv.2003.06.035
17.
Tam
,
C. K.
,
Ju
,
H.
,
Jones
,
M. G.
,
Watson
,
W. R.
, and
Parrott
,
T. L.
,
2005
, “
A Computational and Experimental Study of Slit Resonators
,”
J. Sound Vib.
,
284
(
3–5
), pp.
947
984
.10.1016/j.jsv.2004.07.013
18.
Tam
,
C. K.
,
Ju
,
H.
,
Jones
,
M. G.
,
Watson
,
W. R.
, and
Parrott
,
T. L.
,
2010
, “
A Computational and Experimental Study of Resonators in Three Dimensions
,”
J. Sound Vib.
,
329
(
24
), pp.
5164
5193
.10.1016/j.jsv.2010.06.005
19.
Tam
,
C. K.
,
Pastouchenko
,
N. N.
,
Jones
,
M. G.
, and
Watson
,
W. R.
,
2014
, “
Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow: Self-Noise and Added Drag
,”
J. Sound Vib.
,
333
(
13
), pp.
2831
2854
.10.1016/j.jsv.2014.02.019
20.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
21.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
22.
Wang
,
P.
, and
Liu
,
Y.
,
2017
, “
Unsteady Flow Behavior of a Steam Turbine Control Valve in the Choked Condition: Field Measurement, Detached Eddy Simulation and Acoustic Modal Analysis
,”
Appl. Therm. Eng.
,
117
, pp.
725
739
.10.1016/j.applthermaleng.2017.02.087
23.
Wang
,
P.
,
Ma
,
H.
, and
Liu
,
Y.
,
2018
, “
Unsteady Behaviors of Steam Flow in a Control Valve With T-Junction Discharge Under the Choked Condition: Detached Eddy Simulation and Proper Orthogonal Decomposition
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081104
.10.1115/1.4039254
24.
Hirschberg
,
L.
,
Guzman Inigo
,
J. G.
,
Aulitto
,
A.
,
Sierra
,
J.
,
Fabre
,
D.
,
Morgans
,
A.
, and
Hirschberg
,
A.
,
2022
, “
Linear Theory and Experiments for Laminar Bias Flow Impedance: Orifice Shape Effect
,”
AIAA
Paper No. 2022-2887.10/2514/6.2022-2887
25.
Kierkegaard
,
A.
,
Boij
,
S.
, and
Efraimsson
,
G.
,
2010
, “
A Frequency Domain Linearized Navier–Stokes Equations Approach to Acoustic Propagation in Flow Ducts With Sharp Edges
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
710
719
.10.1121/1.3273899
26.
Holmberg
,
A.
,
Kierkegaard
,
A.
, and
Weng
,
C.
,
2015
, “
A Frequency Domain Linearized Navier–Stokes Method Including Acoustic Damping by Eddy Viscosity Using RANS
,”
J. Sound Vib.
,
346
, pp.
229
247
.10.1016/j.jsv.2015.02.030
27.
Qiang
,
X.
,
Wang
,
P.
, and
Liu
,
Y.
,
2022
, “
Aeroacoustic Simulation of Transient Vortex Dynamics Subjected to High-Intensity Acoustic Waves
,”
Phys. Fluids
,
34
(
9
), p.
093616
.10.1063/5.0109703
28.
Wang
,
P.
,
Ma
,
H.
, and
Liu
,
Y.
,
2019
, “
Proper Orthogonal Decomposition and Extended-Proper Orthogonal Decomposition Analysis of Pressure Fluctuations and Vortex Structures Inside a Steam Turbine Control Valve
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041035
.10.1115/1.4040903
29.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. London. Ser. A
,
231
(
1187
), pp.
505
514
.10.1098/rspa.1955.0191
30.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
31.
Liu
,
X.
,
Qin
,
C.
,
Tang
,
Y.
,
Zhao
,
K.
,
Wang
,
P.
,
Liu
,
Y.
,
He
,
C.
, and
Peng
,
D.
,
2022
, “
Resolving Dynamic Features of Kilohertz Pressure Fluctuations Using Fast-Responding Pressure-Sensitive Paint: Measurement of Inclined Jet Impingement
,”
Exp. Fluids
,
63
(
4
), pp.
1
22
.10.1007/s00348-022-03419-4
32.
Schmidt
,
O. T.
,
Towne
,
A.
,
Rigas
,
G.
,
Colonius
,
T.
, and
Brès
,
G. A.
,
2018
, “
Spectral Analysis of Jet Turbulence
,”
J. Fluid Mech.
,
855
, pp.
953
982
.10.1017/jfm.2018.675
33.
Nidhan
,
S.
,
Chongsiripinyo
,
K.
,
Schmidt
,
O. T.
, and
Sarkar
,
S.
,
2020
, “
Spectral Proper Orthogonal Decomposition Analysis of the Turbulent Wake of a Disk at Re = 50 000
,”
Phys. Rev. Fluids
,
5
(
12
), p.
124606
.10.1103/PhysRevFluids.5.124606
34.
Li
,
F.
,
Wang
,
P.
, and
Liu
,
Y.
,
2022
, “
Unsteady Flow Behaviors and Noise Source Identification of a Ducted Orifice Using Detached-Eddy Simulation
,”
Phys. Fluids
,
34
(
9
), p.
095121
.10.1063/5.0109556
35.
Maa
,
D. Y.
,
1998
, “
Potential of Microperforated Panel Absorber
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2861
2866
.10.1121/1.423870
36.
Xu
,
J.
,
Li
,
X.
, and
Guo
,
Y.
,
2015
, “
Nonlinear Impedance Modeling of Resonator With High Intensity Incident Acoustic Wave
,”
AIAA
Paper No. 2015-2696.10.2514/6.2015-2696
You do not currently have access to this content.