Abstract

A modified multiscale method without constitutive equation is proposed to investigate the microscopic information and macroscopic flow properties of polymeric fluid with the memory effect between parallel plates. In this method, the domain is entirely described by macromodel with isolated molecular dynamics simulations applied to calculate the necessary local stresses. The present method is first verified by the creep-recovery motion and pressure-driven flow, and all results are in excellent agreement with the available numerical solutions in literature. Then, the method is extended to simulate two typical problems of relatively large spatial scale in general beyond the capability of molecular dynamics simulations. In the planar Couette flow, the relationship between macroscopic properties and the time evolution of local molecular information is investigated in detail without long time averaging. All results that are consistent with nonequilibrium molecular dynamics and literature qualitatively or quantitatively demonstrate the validity of present multiscale method in simulating transient viscoelastic flows and the capacity to obtain the polymer information. In the pressure-driven flow, a general monotonically decreasing relationship between the maximum or average velocities and the polymer concentrations has been found regardless of the polymer chain length. Particularly, the reference concentration that satisfies a power law with chain length is closely related to the overlap concentration, and the reference velocity is exactly the relevant velocity of Newtonian fluid with corresponding zero shear rate viscosity.

References

1.
Kröger
,
M.
,
2004
, “
Simple Models for Complex Nonequilibrium Fluids
,”
Phys. Rep.
,
390
(
6
), pp.
453
551
.10.1016/j.physrep.2003.10.014
2.
Larson
,
R. G.
, and
Desai
,
P. S.
,
2015
, “
Modeling the Rheology of Polymer Melts and Solutions
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
47
65
.10.1146/annurev-fluid-010814-014612
3.
Jungst
,
T.
,
Smolan
,
W.
,
Schacht
,
K.
,
Scheibel
,
T.
, and
Groll
,
J.
,
2016
, “
Strategies and Molecular Design Criteria for 3d Printable Hydrogels
,”
Chem. Rev.
,
116
(
3
), pp.
1496
1539
.10.1021/acs.chemrev.5b00303
4.
Fish
,
J.
,
2010
,
Multiscale Methods: Bridging the Scales in Science and Engineering
,
Oxford University Press on Demand
, Oxford, UK.
5.
Gujrati, P. D., and Leonov, A. I., 2010, Modeling and Simulation in Polymers, John Wiley & Sons, Weinheim, Germany, Chap.
7
.
6.
Gooneie
,
A.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2017
, “
A Review of Multiscale Computational Methods in Polymeric Materials
,”
Polymer (Basel
),
9
(
12
), p.
16
.10.3390/polym9010016
7.
Bird
,
R. B.
, and
Wiest
,
J. M.
,
1995
, “
Constitutive Equations for Polymeric Liquids
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
169
193
.10.1146/annurev.fl.27.010195.001125
8.
Li
,
Y.
,
Abberton
,
B.
,
Kröger
,
M.
, and
Liu
,
W.
,
2013
, “
Challenges in Multiscale Modeling of Polymer Dynamics
,”
Polymer (Basel
),
5
(
2
), pp.
751
832
.10.3390/polym5020751
9.
Laso
,
M.
, and
Öttinger
,
H. C.
,
1993
, “
Calculation of Viscoelastic Flow Using Molecular Models: The Connffessit Approach
,”
J. Non-Newtonian Fluid Mech.
,
47
, pp.
1
20
.10.1016/0377-0257(93)80042-A
10.
Murashima
,
T.
, and
Taniguchi
,
T.
,
2011
, “
Multiscale Simulation of History-Dependent Flow in Entangled Polymer Melts
,”
Europhys. Lett.
,
96
(
1
), p.
18002
.10.1209/0295-5075/96/18002
11.
Sato
,
T.
, and
Taniguchi
,
T.
,
2017
, “
Multiscale Simulations for Entangled Polymer Melt Spinning Process
,”
J. Non-Newtonian Fluid Mech.
,
241
, pp.
34
42
.10.1016/j.jnnfm.2017.02.001
12.
Sato
,
T.
,
Harada
,
K.
, and
Taniguchi
,
T.
,
2019
, “
Multiscale Simulations of Flows of a Well-Entangled Polymer Melt in a Contraction–Expansion Channel
,”
Macromolecules
,
52
(
2
), pp.
547
564
.10.1021/acs.macromol.8b00649
13.
Weinan
,
E.
, and
Engquist
,
B.
,
2003
, “
The Heterognous Multiscale Methods
,”
Commun. Math. Sci.
,
1
(
1
), pp.
87
132
.10.4310/CMS.2003.v1.n1.a8
14.
Ren
,
W.
, and
Weinan
,
E.
,
2005
, “
Heterogeneous Multiscale Method for the Modeling of Complex Fluids and Micro-Fluidics
,”
J. Comput. Phys.
,
204
(
1
), pp.
1
26
.10.1016/j.jcp.2004.10.001
15.
Irving
,
J.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes. iv. the Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
(
6
), pp.
817
829
.10.1063/1.1747782
16.
Weinan
,
E.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2009
, “
A General Strategy for Designing Seamless Multiscale Methods
,”
J. Comput. Phys.
,
228
(
15
), pp.
5437
5453
.10.1016/j.jcp.2009.04.030
17.
Borgbjerg
,
U.
,
de Pablo
,
J. J.
, and
Öttinger
,
H. C.
,
1994
, “
The Recovery of Polymer Melts After Shear and Elongational Flows
,”
J. Chem. Phys.
,
101
(
8
), pp.
7144
7153
.10.1063/1.468340
18.
Ramírez
,
J.
, and
Laso
,
M.
,
2005
, “
Size Reduction Methods for the Implicit Time-Dependent Simulation of Micro–Macro Viscoelastic Flow Problems
,”
J. Non-Newtonian Fluid Mech.
,
127
(
1
), pp.
41
49
.10.1016/j.jnnfm.2005.02.002
19.
De
,
S.
,
Fish
,
J.
,
Shephard
,
M. S.
,
Keblinski
,
P.
, and
Kumar
,
S. K.
,
2006
, “
Multiscale Modeling of Polymer Rheology
,”
Phys. Rev. E
,
74
(
3
), p.
030801
.10.1103/PhysRevE.74.030801
20.
De
,
S.
,
2013
, “
Computational Study of the Propagation of the Longitudinal Velocity in a Polymer Melt Contained Within a Cylinder Using a Scale-Bridging Method
,”
Phys. Rev. E
,
88
(
5
), p.
052311
.10.1103/PhysRevE.88.052311
21.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2010
, “
Multiscale Modeling and Simulation for Polymer Melt Flows Between Parallel Plates
,”
Phys. Rev. E
,
81
(
3
), p.
036308
.10.1103/PhysRevE.81.036308
22.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2011
, “
Dynamic Rheology of a Supercooled Polymer Melt in Nonuniform Oscillating Flows Between Rapidly Oscillating Plates
,”
Phys. Rev. E
,
84
(
3
), p.
031501
10.1103/PhysRevE.84.031501
23.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2014
, “
Synchronized Molecular-Dynamics Simulation Via Macroscopic Heat and Momentum Transfer: An Application to Polymer Lubrication
,”
Phys. Rev. X
,
4
(
4
), p.
041011
.10.1103/PhysRevX.4.041011
24.
Yasuda
,
S.
,
2019
, “
Synchronized Molecular-Dynamics Simulation of the Thermal Lubrication of an Entangled Polymeric Liquid
,”
Polym. (Basel
),
11
(
1
), p.
131
.10.3390/polym11010131
25.
Lockerby
,
D. A.
,
Duque-Daza
,
C. A.
,
Borg
,
M. K.
, and
Reese
,
J. M.
,
2013
, “
Time-Step Coupling for Hybrid Simulations of Multiscale Flows
,”
J. Comput. Phys.
,
237
, pp.
344
365
.10.1016/j.jcp.2012.11.032
26.
Maxwell
,
J. C.
,
1867
, “
Iv. on the Dynamical Theory of Gases
,”
Philos. Trans. R. Soc. London
,
157
, pp.
49
88
.10.1098/rstl.1867.0004
27.
Jeffreys
,
H.
,
1929
,
The Earth, Its Origin, History and Physical Constitution
,
Cambridge University Press
, London, UK.
28.
Crochet
,
M.
, and
Walters
,
K.
,
1983
, “
Numerical Methods in Non-Newtonian Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
241
260
.10.1146/annurev.fl.15.010183.001325
29.
Weeks
,
J. D.
,
Chandler
,
D.
, and
Andersen
,
H. C.
,
1971
, “
Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids
,”
J. Chem. Phys.
,
54
(
12
), pp.
5237
5247
.10.1063/1.1674820
30.
Kröger
,
M.
, and
Makhloufi
,
R.
,
1996
, “
Wormlike Micelles Under Shear Flow: A Microscopic Model Studied by Nonequilibrium-Molecular-Dynamics Computer Simulations
,”
Phys. Rev. E
,
53
(
3
), pp.
2531
2536
.10.1103/PhysRevE.53.2531
31.
Kremer
,
K.
, and
Grest
,
G. S.
,
1990
, “
Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation
,”
J. Chem. Phys.
,
92
(
8
), pp.
5057
5086
.10.1063/1.458541
32.
Kröger
,
M.
,
1999
, “
Efficient Hybrid Algorithm for the Dynamic Creation of Wormlike Chains in Solutions, Brushes, Melts and Glasses
,”
Comput. Phys. Commun.
,
118
(
2–3
), pp.
278
298
.10.1016/S0010-4655(98)00160-X
33.
Lees
,
A.
, and
Edwards
,
S.
,
1972
, “
The Computer Study of Transport Processes Under Extreme Conditions
,”
J. Phys. C
,
5
(
15
), pp.
1921
1928
.10.1088/0022-3719/5/15/006
34.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
2017
,
Computer Simulation of Liquids
,
Oxford University Press
, UK.
35.
Rapaport
,
D. C.
, and
Rapaport
,
D. C. R.
,
2004
,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
, Cambridge, UK.
36.
Yang
,
J. Z.
,
Wu
,
X.
, and
Li
,
X.
,
2012
, “
A Generalized Irving–Kirkwood Formula for the Calculation of Stress in Molecular Dynamics Models
,”
J. Chem. Phys.
,
137
(
13
), p.
134104
.10.1063/1.4755946
37.
Zhang
,
D. Z.
, and
Dhakal
,
T. R.
,
2017
, “
Shock Waves Simulated Using the Dual Domain Material Point Method Combined With Molecular Dynamics
,”
J. Comput. Phys.
,
334
, pp.
240
254
.10.1016/j.jcp.2017.01.003
38.
Dhakal
,
T. R.
, and
Zhang
,
D. Z.
,
2018
, “
Combining Dual Domain Material Point Method With Molecular Dynamics for Thermodynamic Nonequilibriums
,”
J. Comput. Phys.
,
374
, pp.
984
995
.10.1016/j.jcp.2018.08.007
39.
Kröger
,
M.
, and
Hess
,
S.
,
2000
, “
Rheological Evidence for a Dynamical Crossover in Polymer Melts Via Nonequilibrium Molecular Dynamics
,”
Phys. Rev. Lett.
,
85
(
5
), pp.
1128
1131
.10.1103/PhysRevLett.85.1128
40.
Barnes
,
H. A.
,
2000
, A Handbook of Elementary Rheology, University of Wales, Institute of NonNewtonian Fluid Mechanics, Aberystwyth, UK.
41.
Kröger
,
M.
,
1995
, “
Nemd-Computersimulation Zur Rheologie Von Polymerschmelzen/Nemd Computer Simulation of Polymer Melt Rheology
,”
Appl. Rheol.
,
5
(
2
), pp.
66
71
.10.2478/arh-1995-050205
42.
Rubinstein
,
M.
, and
Colby
,
R. H.
,
2003
,
Polymer Physics
, Vol.
23
,
Oxford University Press
,
New York
.
43.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2007
, “
Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys
,
2
(
3
), pp.
367
450
.http://www.global-sci.com/intro/article_detail/cicp/7911.html
44.
de Gennes
,
P. G.
,
1979
,
Scaling Concepts in Polymer Physics
,
Cornell University Press
, Ithaca, NY.
45.
Grogan
,
F.
,
Lei
,
H.
,
Li
,
X.
, and
Baker
,
N. A.
,
2020
, “
Data-Driven Molecular Modeling With the Generalized Langevin Equation
,”
J. Comput. Phys.
,
418
, p.
109633
.10.1016/j.jcp.2020.109633
46.
Lei
,
H.
,
Wu
,
L.
, and
Weinan
,
E.
,
2020
, “
Machine-Learning-Based Non-Newtonian Fluid Model With Molecular Fidelity
,”
Phys. Rev. E
,
102
(
4
), p.
043309
.10.1103/PhysRevE.102.043309
47.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.10.1126/science.aaw4741
48.
Han
,
J.
,
Ma
,
C.
,
Ma
,
Z.
, and
Weinan
,
E.
,
2019
, “
Uniformly Accurate Machine Learning-Based Hydrodynamic Models for Kinetic Equations
,”
Proc. Natl. Acad. Sci.
,
116
(
44
), pp.
21983
21991
.10.1073/pnas.1909854116
49.
Zhao
,
L.
,
Li
,
Z.
,
Caswell
,
B.
,
Ouyang
,
J.
, and
Karniadakis
,
G. E.
,
2018
, “
Active Learning of Constitutive Relation From Mesoscopic Dynamics for Macroscopic Modeling of Non-Newtonian Flows
,”
J. Comput. Phys.
,
363
, pp.
116
127
.10.1016/j.jcp.2018.02.039
50.
Lei
,
H.
,
Baker
,
N. A.
, and
Li
,
X.
,
2016
, “
Data-Driven Parameterization of the Generalized Langevin Equation
,”
Proc. Natl. Acad. Sci.
,
113
(
50
), pp.
14183
14188
.10.1073/pnas.1609587113
You do not currently have access to this content.