Abstract

This article investigates the dynamics of droplet generation process in a microfluidic flow-focusing device under the effect of geometry altered by the intersection angle (φ), which the flanking inlets make with central inlet and wall wettability quantified by the contact angle (θ) using volume of fluid (VOF) model. These parameters have been found to alter the droplet shape and size greatly. The effect of intersection angles has been examined for φ = 15 deg, 30 deg, 45 deg, 60 deg, 90 deg, and 120 deg for generating size-controlled droplets. It was predicted that the diameter of droplet increased with the increase in intersection angle (φ = 15 deg, 30 deg, 45 deg, 60 deg, 90 deg, and 120 deg) and the maximum diameter has been generated at φ = 90. In addition, the wetting characteristics (hydrophilic to hydrophobic) have been studied numerically in detail by changing the contact angle of the dispersed phase with the channel wall ranging from 90 deg to 180 deg. It was indicated that the droplets of rectangular shape are formed in hydrophilic channel by completely wetting the wall when θ ≤ 90 deg. They transform their shape to slightly oval form with the increase in contact angle and start acquiring spherical shape when the channel becomes hydrophobic. Furthermore, Parameters such as dimensionless droplet diameter, droplet shape, and droplet breakup time have also been investigated extensively for flowrate ratios Q = 0.125, 0.25, 0.5, and 1, in order to optimize the microfluidic device.

References

1.
Chou
,
W. L.
,
Lee
,
P. W.
,
Yang
,
C. L.
,
Huang
,
W. Y.
, and
Lin
,
Y. S.
,
2015
, “
Recent Advances in Applications of Droplet Microfluidics
,”
Micromachines
,
6
(
9
), pp.
1249
1271
.10.3390/mi6091249
2.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
3.
Christopher
,
G. F.
, and
Anna
,
S. L.
,
2007
, “
Microfluidic Methods for Generating Continuous Droplet Streams
,”
J. Phys. D: Appl. Phys.
,
40
(
19
), pp.
R319
R336
.10.1088/0022-3727/40/19/R01
4.
Baroud
,
C. N.
,
Gallaire
,
F.
, and
Dangla
,
R.
,
2010
, “
Dynamics of Microfluidic Droplets
,”
Lab Chip
,
10
(
16
), pp.
2032
2045
.10.1039/c001191f
5.
Sajeesh
,
P.
,
Doble
,
M.
, and
Sen
,
A. K.
,
2014
, “
Hydrodynamic Resistance and Mobility of Deformable Objects in Microfluidic Channels
,”
Biomicrofluidics
,
8
(
5
), p.
054112
.10.1063/1.4897332
6.
Jose
,
B. M.
, and
Cubaud
,
T.
,
2014
, “
Formation and Dynamics of Partially Wetting Droplets in Square Microchannels
,”
RSC Adv.
,
4
(
29
), pp.
14962
14970
.10.1039/C4RA00654B
7.
Lashkaripour
,
A.
,
Mehrizi
,
A. A.
,
Rasouli
,
M.
, and
Goharimanesh
,
M.
,
2015
, “
Numerical Study of Droplet Generation Process in a Microfluidic Flow-Focusing
,”
J. Comput. Appl. Mech.
,
46
(
2
), pp.
167
175
.https://www.researchgate.net/publication/282673229_Numerical_Study_of_Droplet_Generation_Process_in_a_Microfluidic_Flow_Focusing
8.
Garstecki
,
P.
,
Ganan-Calvo
,
A. M.
, and
Whitesides
,
G. M.
,
2005
, “
Formation of Bubbles and Droplets in Microfluidic Systems
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
53
(
4
), pp.
361
372
.http://bulletin.pan.pl/(53-4)361.pdf
9.
Malekzadeh
,
S.
, and
Roohi
,
E.
,
2015
, “
Investigation of Different Droplet Formation Regimes in a T-Junction Microchannel Using the VOF Technique in OpenFOAM
,”
Microgravity Sci. Technol.
,
27
(
3
), pp.
231
243
.10.1007/s12217-015-9440-2
10.
Sang
,
L.
,
Hong
,
Y.
, and
Wang
,
F.
,
2009
, “
Investigation of Viscosity Effect on Droplet Formation in T-Shaped Microchannels by Numerical and Analytical Methods
,”
Microfluid. Nanofluid.
,
6
(
5
), pp.
621
635
.10.1007/s10404-008-0329-x
11.
Rosengarten
,
G.
,
Harvie
,
D.
, and
Cooper-White
,
J.
,
2006
, “
Contact Angle Effects on Microdroplet Deformation Using CFD
,”
Appl. Math. Model.
,
30
(
10
), pp.
1033
1042
.10.1016/j.apm.2005.06.011
12.
Santos
,
R.
, and
Kawaji
,
M.
,
2012
, “
Developments on Wetting Effects in Microfluidic Slug Flow
,”
Chem. Eng. Commun.
,
199
(
12
), pp.
1626
1641
.10.1080/00986445.2012.660712
13.
Bashir
,
S.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2011
, “
Simulations of Microfluidic Droplet Formation Using the Two-Phase Level Set Method
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4733
4741
.10.1016/j.ces.2011.06.034
14.
Conchouso
,
D.
,
Castro
,
D.
,
Khan
,
S. A.
, and
Foulds
,
I. G.
,
2014
, “
Three-Dimensional Parallelization of Microfluidic Droplet Generators for a Litre Per Hour Volume Production of Single Emulsions
,”
Lab Chip
,
14
(
16
), pp.
3011
3020
.10.1039/C4LC00379A
15.
Shi
,
Y.
,
Tang
,
G.
, and
Xia
,
H.
,
2014
, “
Lattice Boltzmann Simulation of Droplet Formation in T-Junction and Flow Focusing Devices
,”
Comput. Fluids
,
90
, pp.
155
163
.10.1016/j.compfluid.2013.11.025
16.
Gupta
,
A.
,
Matharoo
,
H. S.
,
Makkar
,
D.
, and
Kumar
,
R.
,
2014
, “
Droplet Formation Via Squeezing Mechanism in a Microfluidic Flow-Focusing Device
,”
Comput. Fluids
,
100
, pp.
218
226
.10.1016/j.compfluid.2014.05.023
17.
Ngo
,
I. L.
,
Joo
,
S. W.
, and
Byon
,
C.
,
2016
, “
Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-Junction
,”
ASME J. Fluids Eng.
,
138
, p.
051202
.10.1115/1.4031881
18.
Castro-Hernandez
,
E.
,
Kok
,
M. P.
,
Versluis
,
M.
, and
Rivas
,
D. F.
,
2016
, “
Study of the Geometry in a 3D Flow-Focusing Device
,”
Microfluid. Nanofluid.
,
20
, p.
40
.https://link.springer.com/article/10.1007%2Fs10404-016-1708-3
19.
Liu
,
K.
,
Zhao
,
L. B.
,
Zeng
,
Q.
,
Guo
,
Z. X.
,
Liu
,
J.
, and
Zhao
,
X. Z.
,
2007
, “
Injection Angle Dependence in Flow Focusing Based Droplet Formation
,”
Proceeding of First International Conference on Bioinformatics and Biomedical Engineering
(
ICBBE
), Wuhan, China, July 6-8, pp.
1121
1124
.10.1109/ICBBE.2007.290
20.
Bashir
,
S.
,
Casadevall
,
i
,
Solvas
,
X.
,
Bashir
,
M.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2014
, “
Dynamic Wetting in Microfluidic Droplet Formation
,”
Biochip J.
,
8
(
2
), pp.
122
128
.10.1007/s13206-014-8207-y
You do not currently have access to this content.